• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHONG Da-ning, LIU Yao-ru, YANG Qiang, XU Jian-rong, HE Ming-jie, ZHANG Wei-di. Prediction of deformation of valley width of Baihetan arch dam and deformation mechanisms of several methods[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1455-1463. DOI: 10.11779/CJGE201908009
Citation: ZHONG Da-ning, LIU Yao-ru, YANG Qiang, XU Jian-rong, HE Ming-jie, ZHANG Wei-di. Prediction of deformation of valley width of Baihetan arch dam and deformation mechanisms of several methods[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1455-1463. DOI: 10.11779/CJGE201908009

Prediction of deformation of valley width of Baihetan arch dam and deformation mechanisms of several methods

More Information
  • Received Date: November 27, 2018
  • Published Date: August 24, 2019
  • The super high arch dams built in China, such as Xiluodu and Jinping, show abnormal phenomenon of reduction of valley width during the initial impounding stage. The arch dam is a high-order statically indeterminate structure, which is very sensitive to deformation of dam foundation, especially non-uniform deformation. Based on the deformation mechanism of valley width and the method for calculating the boundary displacement, the possible deformation of valley width of Baihetan arch dam in the process of initial impounding is calculated and predicted, and its effects on the displacement and stress of the dam are analyzed by using the elastoplastic finite element method. The results show that the two methods are greatly different. From the perspective of change of effective stress and weakening of rock mass materials, the maximum reduction of valley width is no more than 40 mm, and it will not greatly reduce the overall stability of the arch dam, but only causes new stress concentration area on the dam body. However, the arch dam has strong overload capability to the boundary displacement, and the impact of the reduction of the valley width on the stress of the dam is very small. The non-uniform deformation of the foundation is the key factor which affects the dam stress.
  • [1]
    FRIGERIO A, MAZZA G.The rehabilitation of Beauregard dam: the contribution of the numerical modeling[C]// 12th International Benchmark Workshop on Numerical Analysis of Dams. Vienna, 2013: 343-352.
    [2]
    MULLER L.The rock slide in the Vajont Valley[J]. Rock Mechanics and Engineering Geology, 1964, 2(3): 148-212.
    [3]
    LONDE P.The Malpasset dam failure[J]. Engineering Geology, 1987, 24(1/2/3/4): 295-329.
    [4]
    LOMBARDI G.Kolnbrein dam: an unusual solution for an unusual problem[J]. International Water Power & Dam Construction, 1991, 43(6): 31-34.
    [5]
    刘有志, 张国新, 程恒, 等. 特高拱坝谷幅缩窄成因及对大坝变形和应力的影响分析[C]//中国大坝协会学术年会. 郑州, 2014.
    (LIU You-zhi, ZHANG Guo-xin, CHENG Heng, et al.Valley width reduction causes and its effects on displacement and stress of the dam[C]// Chinese Dam Academic Annual Meeting. Zhengzhou, 2014. (in Chinese))
    [6]
    梁国贺, 胡昱, 樊启祥, 等. 溪洛渡高拱坝蓄水期谷幅变形特性与影响因素分析[J]. 水力发电学报, 2016, 35(9): 101-110.
    (LIANG Guo-he, HU Yu, FAN Qi-xiang, et al.Analysis on valley deformation of Xiluodu high arch dam during impoundment and its influencing factors[J]. Journal of Hydroelectric Engineering, 2016, 35(9): 101-110. (in Chinese))
    [7]
    汤雪娟, 张冲, 王仁坤. 渗流场作用的地基变形对高拱坝结构的影响[J]. 地下空间与工程学报, 2016, 12(增刊2): 645-650.
    (TANG Xue-juan, ZHANG Chong, WANG Ren-kun.Analysis on foundation deformation and its effect on high arch dam surface considering seepage field[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(S2): 645-650. (in Chinese))
    [8]
    PARONUZZI P, RIGO E, BOLLA A.Influence of filling drawdown cycles of the Vajont reservoir on Mt. Toc slope stability[J]. Geomorphology, 2013, 191(5): 75-93.
    [9]
    CHENG L, LIU Y R, YANG Q, et al.Mechanism and numerical simulation of reservoir slope deformation during impounding of high arch dams based on nonlinear FEM[J]. Computers and Geotechnics, 2017, 81: 143-154.
    [10]
    杨宝全, 张林, 徐进, 等. 高拱坝坝肩软岩及结构面强度参数水岩耦合弱化效应试验研究[J]. 四川大学学报(工程科学版), 2015, 47(2): 21-27.
    (YANG Bao-quan, ZHANG Lin, XU Jin, et al.Experimental study of weakening effect of water-rock coupling interaction on strength parameters of dam abutment weak rock and structural plane for high arch dam[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(2): 21-27. (in Chinese))
    [11]
    TERZAGHI K.The shearing resistance of saturated soils and the angle between the planes of shear[C]// Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering. Harvard, 1936: 54-56.
    [12]
    LADE P V, BOER D E.The concept of effective stress for soil, concrete and rock[J]. Géotechnique, 1997, 47(1): 61-78.
    [13]
    NUR A, BYERLEE J D.An exact effective stress law for elastic deformation of rock with fluids[J]. Journal of Geophysical Research, 1971, 76(26): 6414-6419.
    [14]
    BIOT M A, WILLIS D G.The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics, 1957, 24: 594-601.
    [15]
    SKEMPTON A W.Effective stress in soils, concrete and rocks[C]// Proceedings of the Conference on Pore Pressure and Suction in Soils. Butterworths, 1960.
    [16]
    COUSSY O.Poromechanics[M]. London: John Wiley & Sons, 2004.
    [17]
    BORJA R I, KOLIJI A.On the effective stress in unsaturated porous continua with double porosity[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1182-1193.
    [18]
    BARENBLATT G I, ZHELTOV I P, KOCHINA I N.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics, 1960, 24(5): 1286-1303.
    [19]
    TUNCAY K, CORAPCIOGLU M Y.Effective stress principle for saturated fractured porous media[J]. Water Resources Research, 1995, 31(12): 3103-3106.
    [20]
    MA J J, ZHAO G F, KHALILI N.A fully coupled flow deformation model for elasto-plastic damage analysis in saturated fractured porous media[J]. International Journal of Plasticity, 2016, 76: 29-50.
    [21]
    杨强, 潘元炜, 程立, 等. 蓄水期边坡及地基变形对高拱坝的影响[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3979-3986.
    (YANG Qiang, PAN Yuan-wei, CHENG Li, et al.Impounding influence of slope and foundation deformation on high arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3979-3986. (in Chinese))
    [22]
    杨强, 陈新, 周维垣. 基于D-P准则的三维弹塑性有限元增量计算的有效算法[J]. 岩土工程学报, 2002, 24(1): 16-20.
    (YANG Qiang, CHEN Xin, ZHOU Wei-yuan.A practical 3D elasto-plastic incremental method in FEM based on D-P yield criteria[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 16-20. (in Chinese))
    [23]
    程立, 刘耀儒, 潘元炜, 等. 锦屏一级拱坝左岸边坡长期变形对坝体影响研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4040-4052.
    (CHENG Li, LIU Yao-ru, PAN Yuan-wei, et al.Research on influence of left bank slope’s long-term deformation on dam body for JinpingⅠarch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4040-4052. (in Chinese))
  • Related Articles

    [1]ZHANG Sheng, YAN Han, TENG Ji-dong, ZHANG Xun, SHENG Dai-chao. New model for hydraulic conductivity of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2146-2152. DOI: 10.11779/CJGE202011021
    [2]SHAO Long-tan, WEN Tian-de, GUO Xiao-xia. Direct measurement method and prediction formula for permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 806-812. DOI: 10.11779/CJGE201905002
    [3]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [4]CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
    [5]SONG Lin-hui, HUANG Qiang, YAN Di, MEI Guo-xiong. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. DOI: 10.11779/CJGE201809009
    [6]ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006
    [7]WU Gang, LEI Guo-hui, JIANG Hong. Experimental study on permeability of woven geotextile covered with soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 161-165. DOI: 10.11779/CJGE2017S1032
    [8]QIN Xiao-hua, LIU Dong-sheng, SONG Qiang-hui, WU Yue, ZHANG Yu, YE Yong. Reliability analysis of bedrock laminar slope stability considering variability of saturated hydraulic conductivity of soil under heavy rainfall[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1065-1073. DOI: 10.11779/CJGE201706012
    [9]WU Meng-xi, CHENG Peng-da, FAN Fu-ping, LI Xiao-bin. Test apparatus and method for field measurement of surface permeability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 184-189. DOI: 10.11779/CJGE2016S2030
    [10]YE Weimin, QIAN Lixin, CHEN Bao, WANG Ju, CUI Yujun. Laboratory test on unsaturated hydraulic conductivity of densely compacted Gaomiaozi Bentonite under confined conditions[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 105-108.
  • Cited by

    Periodical cited type(14)

    1. 黄正均,武旭,郭国龙,马驰,张栋. 非贯通断续节理岩石剪切力学特性及破坏机理研究. 中国测试. 2025(02): 19-29+38 .
    2. 刘婷婷,曾乐乐,张超,李新平,杨婷,张腾胜. 节理分布形式对交叉节理岩体动态力学特性与破坏模式影响研究. 岩石力学与工程学报. 2024(01): 90-102 .
    3. 陈浩南,朱泽奇,庞鑫,万道春,夏禄清,张少军. 岩石卸荷的Mogi-Coulomb强度准则适用性研究. 力学与实践. 2024(03): 602-608 .
    4. 陈毅. 深埋硬岩隧道结构面对岩爆破坏特征的影响研究. 水电能源科学. 2024(07): 105-108+72 .
    5. 杜岩,张洪达,谢谟文,蒋宇静,李双全,刘敬楠. 大型危岩体崩塌灾害早期监测预警技术研究综述. 工程科学与技术. 2024(05): 10-23 .
    6. 孙杰龙,陈锐,李晓敏,邱明明,曹雪叶,王银. 单轴压缩下饱和裂隙红砂岩力学特性试验及PFC~(2D)模拟. 延安大学学报(自然科学版). 2024(04): 114-120 .
    7. 高美奔,李天斌,陈国庆,孟陆波,马春驰,张岩,阴红宇,钟雨奕. 基于岩石峰前起裂及峰后特征的脆性评价方法. 岩土工程学报. 2022(04): 762-768 . 本站查看
    8. 刘先林,范杰,朱觉文,李明智,朱星. 单轴压缩下岩桥脆性断裂的临界慢化特征. 水利水电技术(中英文). 2022(03): 166-175 .
    9. 王刚,宋磊博,刘夕奇,包春燕,吝曼卿,刘广建. 非贯通节理花岗岩剪切断裂力学特性及声发射特征研究. 岩土力学. 2022(06): 1533-1545 .
    10. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    11. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 .
    12. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 .
    13. 李博,叶鹏进,黄林,王丁,赵程,邹良超. 干燥与饱和岩石裂隙受压变形与声发射特性研究. 岩土工程学报. 2021(12): 2249-2257 . 本站查看
    14. 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究. 中国安全生产科学技术. 2020(09): 116-121 .

    Other cited types(9)

Catalog

    Article views (294) PDF downloads (304) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return