• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Bo, YE Peng-jin, HUANG Lin, WANG Ding, ZHAO Cheng, ZOU Liang-chao. Deformation and acoustic emission characteristics of dry and saturated rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2249-2257. DOI: 10.11779/CJGE202112011
Citation: LI Bo, YE Peng-jin, HUANG Lin, WANG Ding, ZHAO Cheng, ZOU Liang-chao. Deformation and acoustic emission characteristics of dry and saturated rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2249-2257. DOI: 10.11779/CJGE202112011

Deformation and acoustic emission characteristics of dry and saturated rock fractures

More Information
  • Received Date: March 25, 2021
  • Available Online: November 30, 2022
  • The natural rock masses are situated in various complex geological conditions. Quantitative description of the deformation and failure behaviors of rock fractures under these conditions is of fundamental importance for the studies related to their mechanical behaviors. In this study, the unconfined compression tests and the elastic-plastic contact numerical simulations are implemented to study the compressive deformation and failure behavior of two kinds of rock fractures under dry and saturated conditions, together with acoustic emission detection and analysis. The results show that the normal stress-displacement curves and the plastic failure areas obtained from the experiment and the numerical simulation agree well with each other, which verifies the reliability of the contact method. The mean increment of plastic deformation decreases nonlinearly with the increasing normal stress with a decreasing rate, and a fitting formula is established using mechanical and geometric parameters. The position of acoustic emission (AE) sources matches with the damage area obtained from the experiment and the numerical simulation. Both the AE ringing count and the cumulative count are higher in dry rocks than those in saturated rocks. The AE ringing count and the mean increment of plastic deformation follow an identical changing trend. These results reveal the controlling role played by the fundamental mechanical parameters and geometric properties in the deformation and failure behaviors of rock fractures.
  • [1]
    ERGULER Z A, ULUSAY R. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 355-370. doi: 10.1016/j.ijrmms.2008.07.002
    [2]
    RAJABZADEH M A, MOOSAVINASAB Z, RAKHSHANDEHROO G. Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks[J]. Rock Mechanics and Rock Engineering, 2012, 45(1): 113-122. doi: 10.1007/s00603-011-0169-y
    [3]
    WONG L N Y, MARUVANCHERY V, LIU G. Water effects on rock strength and stiffness degradation[J]. Acta Geotechnica, 2016, 11(4): 713-737. doi: 10.1007/s11440-015-0407-7
    [4]
    BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6): 249-268.
    [5]
    PEI L, HYUN S, MOLINARI J F, et al. Finite element modeling of elasto-plastic contact between rough surfaces[J]. Journal of the Mechanics & Physics of Solids, 2005, 53(11): 2385-2409.
    [6]
    LAVROV A. Fracture permeability under normal stress: a fully computational approach[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(1): 181-194. doi: 10.1007/s13202-016-0254-6
    [7]
    TIAN X F, BHUSHAN B. A numerical three-dimensional model for the contact of rough surfaces by variational principle[J]. Journal of Tribology, 1996, 118(1): 33-42. doi: 10.1115/1.2837089
    [8]
    HOPKINS D L. The Effect of Surface Roughness on Joint Stiffness, Aperture, and Acoustic Wave Propagation[D]. Berkeley: University of California, 1991.
    [9]
    LI B, ZHAO Z H, JIANG Y J, et al. Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(13): 1431-1449. doi: 10.1002/nag.2365
    [10]
    GREENWOOD J A, WILLIAMSON J B P P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London, 1966, 295(1442): 300-319.
    [11]
    KLING T, VOGLER D, PASTEWKA L, et al. Numerical simulations and validation of contact mechanics in a granodiorite fracture[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2805-2824. doi: 10.1007/s00603-018-1498-x
    [12]
    ZOU L C, LI B, MO Y Y, et al. A high-resolution contact analysis of rough-walled crystalline rock fractures subject to normal stress[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2141-2155. doi: 10.1007/s00603-019-02034-w
    [13]
    RUDAJEV V, VILHELM J, LOKAJÍČEK T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 699-704. doi: 10.1016/S1365-1609(99)00126-4
    [14]
    陈国庆, 陈毅, 孙祥, 等. 开放型岩桥裂纹贯通机理及脆性破坏特征研究[J]. 岩土工程学报, 2020, 42(5): 908-915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005018.htm

    CHEN Guo-qing, CHEN Yi, SUN Xiang, et al. Crack coalescence and brittle failure characteristics of open rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 908-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005018.htm
    [15]
    LIU S M, LI X L, WANG D K, et al. Mechanical and acoustic emission characteristics of coal at temperature impact[J]. Natural Resources Research, 2019, 29(4): 1755-17772.
    [16]
    龚囱, 李长洪, 赵奎. 红砂岩短时蠕变声发射b值特征[J]. 煤炭学报, 2015, 40(增刊1): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2015S1013.htm

    GONG Cong, LI Chang-hong, ZHAO Kui. Study on b-value characteristics of acoustic emission of red sandstone during short-time creep process[J]. Journal of China Coal Society, 2015, 40(S1): 85-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2015S1013.htm
    [17]
    王春来, 廖泽锋, 李长峰, 等. 花岗岩岩爆声发射时空熵值动态特征实验研究[J]. 采矿与安全工程学报, 2019, 36(3): 626-633. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903027.htm

    WANG Chun-lai, LIAO Ze-feng, LI Chang-feng, et al. Experimental investigation of dynamic characteristics of AE spatio-temporal entropy for granitic rockburst[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 626-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903027.htm
    [18]
    LI L R, DENG J H, ZHENG L, et al. Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1337-1346. doi: 10.1007/s00603-016-1162-2
    [19]
    赵兴东, 李元辉, 袁瑞甫, 等. 基于声发射定位的岩石裂纹动态演化过程研究[J]. 岩石力学与工程学报, 2007, 26(5): 944-950. doi: 10.3321/j.issn:1000-6915.2007.05.011

    ZHAO Xing-dong, LI Yuan-hui, YUAN Rui-pu, et al. Study on crack dynamic propagation process of rock samples based on acoustic emission location[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 944-950. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.05.011
    [20]
    刘建坡, 徐世达, 李元辉, 等. 预制孔岩石破坏过程中的声发射时空演化特征研究[J]. 岩石力学与工程学报, 2012, 31(12): 2538-2547. doi: 10.3969/j.issn.1000-6915.2012.12.018

    LIU Jian-po, XU Shi-da, LI Yuan-hui, et al. Studies of AE time-space evolution characteristics during failure process of rock specimens with prefabricated holes[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2538-2547. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.018
    [21]
    DONG L J, HU Q C, TONG X J, et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J]. Engineering, 2020, 6(7): 827-834. doi: 10.1016/j.eng.2019.12.016
    [22]
    GEIGER L. Probability method for determination of earthquake epicenters form arrival time only[J]. Bulletin of Saint Louis University, 1912, 8: 60-71.
    [23]
    赵兴东, 刘建坡, 李元辉, 等. 岩石声发射定位技术及其实验验证[J]. 岩土工程学报, 2008, 30(10): 1472-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200810012.htm

    ZHAO Xing-dong, LIU Jian-po, LI Yuan-hui, et al. Experimental verification of rock locating technique with acoustic emission[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1472-1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200810012.htm
    [24]
    BOUSSINESQ J. Application des potentiels: à l'étude de l'équilibre et du mouvement des solides élastiques[J]. Gauthier-Villard, Paris, 1885.
    [25]
    MOMBER A W. Fracture toughness effects in geomaterial solid particle erosion[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1573-1588.
    [26]
    PRADHAN P S, KING R L, YOUNAN N H, et al. Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3674-3686.
    [27]
    BROWN S R, SCHOLZ C H. Closure of rock joints[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4939-4948.
    [28]
    王笑然, 李楠, 王恩元, 等. 岩石裂纹扩展微观机制声发射定量反演[J]. 地球物理学报, 2020, 63(7): 2627-2643. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007013.htm

    WANG Xiao-ran, LI Nan, WANG En-yuan, et al. Microcracking mechanisms of sandstone from acoustic emission source inversion[J]. Chinese Journal of Geophysics, 2020, 63(7): 2627-2643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007013.htm
    [29]
    YAO Q L, CHEN T, JU M H, et al. Effects of water intrusion on mechanical properties of and crack propagation in coal[J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4699-4709.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return