Citation: | LÜ Zhi-tao, XIA Cai-chu, LI Qiang, WANG Yue-song. Frost heave experiments on saturated sandstone under unidirectional freezing conditions in an open system and coupled THM frost heave model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1435-1444. DOI: 10.11779/CJGE201908007 |
[1] |
张俊儒, 仇文革. 昆仑山隧道冻胀力现场测试及其数据分析[J]. 岩土力学, 2006, 27(增刊1): 564-568.
(ZHANG Jun-ru, QIU Wen-ge.In-situ test and data analysis of frost-heave force of Kunlun Mountain Tunnel[J]. Rock and Soil Mechanics, 2006, 27(S1): 564-568. (in Chinese)) |
[2] |
陶履彬. 岩石冻胀性与其含水率关系的试验研究[C]//第一届华东岩土工程学术大会论文集. 无锡, 1990: 387-396.
(TAO Lü-bing.Experimental study of the relationship between the frost heave ratio and the water content of the rock[C]// Proceedings of the First Session of the East China Geotechnical Conference. Wuxi, 1990: 387-396. (in Chinese)) |
[3] |
康永水, 刘泉声, 赵军, 等. 岩石冻胀变形特征及寒区隧道冻胀变形模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2518-2526.
(KANG Yong-shui, LIU Quan-sheng, ZHAO Jun, et al.Research on frost deformation characteristics of rock and simulation of tunnel frost deformation in cold region[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2518-2526. (in Chinese)) |
[4] |
MELLOR M.Phase composition of pore water in cold rocks[R]. Hanover: Cold Regions Research and Engineering Laboratory, 1970.
|
[5] |
夏才初, 黄继辉, 韩常领, 等. 寒区隧道岩体冻胀率的取值方法和冻胀敏感性分级[J]. 岩石力学与工程学报, 2013, 32(9): 1876-1885.
(XIA Cai-chu, HUANG Ji-hui, HAN Chang-ling, et al.Evaluation of the frost-heave ratio and classification of the frost heave susceptibility for rock mass around cold region tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1876-1885. (in Chinese)) |
[6] |
MATSUOKA N.Mechanisms of rock breakdown by frost action:an experimental approach[J]. Cold Regions Science and Technology, 1990, 17(3): 253-270.
|
[7] |
刘泉声, 黄诗冰, 康永水, 等. 低温饱和岩石未冻水含量与冻胀变形模型研究[J]. 岩石力学与工程学报, 2016, 35(10): 2000-2012.
(LIU Quan-sheng, HUANG Shi-bing, KANG Yong-shui, et al.Study of unfrozen water content and frost heave model for saturated rock under low temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2000-2012. (in Chinese)) |
[8] |
LÜ Z, XIA C, LI Q.Experimental and numerical study on frost heave of saturated rock under uniform freezing conditions[J]. Journal of Geophysics and Engineering, 2018, 15(2): 593-612.
|
[9] |
夏才初, 李强, 吕志涛, 等. 各向均匀与单向冻结条件下饱和岩石冻胀变形特性对比试验研究[J]. 岩石力学与工程学报, 2018, 37(2): 274-281.
(XIA Cai-chu, LI Qiang, LÜ Zhi-tao, et al.Comparative experimental study on frost deformation characteristics of saturated rock under uniform freezing and uni-directional freezing conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 274-281. (in Chinese)) |
[10] |
AKAGAWA S, FUKUDA M.Frost heave mechanism in welded tuff[J]. Permafrost and Periglacial Processes, 1991, 2(4): 301-309.
|
[11] |
HALLET B, WALDER J, STUBBS C.Weathering by segregation ice growth in microcracks at sustained subzero temperatures: verification from an experimental study using acoustic emissions[J]. Permafrost and Periglacial Processes, 1991, 2(4): 283-300.
|
[12] |
MURTON J, COUTARD J, LAUTRIDOU J, et al.Physical modelling of bedrock brecciation by ice segregation in permafrost[J]. Permafrost and Periglacial Processes, 2001, 12(3): 255-266.
|
[13] |
MURTON J, PETERSON R, OZOUF J.Bedrock fracture by ice segregation in cold regions[J]. Science, 2006, 314: 1127-1129.
|
[14] |
AKAGAWA S, SATOH M, KANIE S, et al.Effect of tensile strength on ice lens initiation temperature[C]//Cold Regions Engineering 2006. Orono, 2006: 1-12.
|
[15] |
NAKAMURA D, GOTO T, SUZUKI T, et al.Basic study on the frost heave pressure of rocks: dependence of the location of frost heave on the strength of the rock[C]//Cold Regions Engineering 2012: Sustainable Infrastructure Development in a Changing Cold Environment. Quebec City, 2012: 124-133.
|
[16] |
NEAUPANE K, YAMABE T, YOSHINAKA R.Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 563-580.
|
[17] |
KANG Y, LIU Q, HUANG S.A fully coupled thermo-hydro- mechanical model for rock mass under freezing/thawing condition[J]. Cold Regions Science and Technology, 2013, 95: 19-26.
|
[18] |
DUCA S, ALONSO E, SCAVIA C.A permafrost test on intact gneiss rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 142-151.
|
[19] |
EVERETT D.The thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society, 1961, 57: 1541-1551.
|
[20] |
O’NEILL K, MILLER R. Exploration of a rigid ice model of frost heave[J]. Water Resources Research, 1985, 21(3): 281-296.
|
[21] |
KONRAD J.Sixteenth Canadian Geotechnical Colloquium: Frost heave in soils: concepts and engineering[J]. Canadian Geotechnical Journal, 1994, 31(2): 223-245.
|
[22] |
ZHOU J, WEI C, WEI H, et al. Experimental and theoretical characterization of frost heave and ice lenses[J]. Cold Regions Science and Technology, 2014, 104/105: 76-87.
|
[23] |
TAN X, CHEN W, TIAN H, et al.Water flow and heat transport including ice/water phase change in porous media: Numerical simulation and application[J]. Cold Regions Science and Technology, 2011, 68(1/2): 74-84.
|
[24] |
MICHALOWSKI R, ZHU M.Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 703-722.
|
[25] |
KONRAD J.Prediction of freezing-induced movements for an underground construction project in Japan[J]. Canadian Geotechnical Journal, 2002, 39(6): 1231-1242.
|
[1] | WANG Zili, LI Jinfeng, TENG Jidong, ZHANG Sheng, SHENG Daichao. THM coupled model for simulating frost heave based on a new water film pressure criterion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 997-1007. DOI: 10.11779/CJGE20220227 |
[2] | ZHOU Feng-xi, GAO Guo-yao. Multi-field coupling process of heat-moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813-820. DOI: 10.11779/CJGE201905003 |
[3] | WANG Yi, WANG Zheng-zhong, LIU Quan-hong, XIAO Min. Experimental investigations on frost damage of canals caused by interaction between frozen soils and linings in cold regions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1799-1808. DOI: 10.11779/CJGE201810006 |
[4] | CHEN Pei-pei, BAI Bing. Numerical simulation of moisture-heat coupling in porous media with circular heat source by SPH method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1025-1030. DOI: 10.11779/CJGE201506008 |
[5] | HE Min, LI Ning, LIU Nai-fei. Analysis and validation of coupled heat-moisture-deformation model forsaturated frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1858-1865. |
[6] | Separate ice frost heave model for coupled moisture and heat transfer in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1746-1751. |
[7] | Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4). |
[8] | Finite volume simulation for coupled moisture and heat transfer during soil freezing[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3). |
[9] | Yang DaiQuan, Shen Zhujiang. Modelling fully coupled moisture, air and heat transfer in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 357-361. |
[10] | Guo Li, Miao Tiande, Zhang Hui, Niu Yonghong. Thermodynamic models of heat moisture migration in saturated freezing soil[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 90-94. |
1. |
张勇敢,鲁洋,刘斯宏,田金博,张思钰,方斌昕. 土工袋抑制膨胀土冻胀性能试验及机制探讨. 岩土力学. 2024(03): 759-768+796 .
![]() | |
2. |
赵庆吉,郭妍秀,杨甫权,海明威,张启,周彬,闫涵. 寒区水利工程膨胀土边坡冻胀特性研究. 水利科学与寒区工程. 2024(07): 1-4 .
![]() | |
3. |
上官云龙,薛东升,王罡. 延边地区膨胀土冻胀特性及起始冻胀含水率试验研究. 吉林建筑大学学报. 2024(04): 31-36 .
![]() | |
4. |
王家琪,刘志峰,张涛,肖智,薛磊,樊文虎. 单向冻结条件下饱和粉土局部冻胀特性研究. 金陵科技学院学报. 2024(04): 40-47 .
![]() | |
5. |
陆世锋,冯世进. 固相可降解土体多场耦合模型及有限体积法数值实现. 岩土工程学报. 2023(07): 1438-1450 .
![]() | |
6. |
李星,顾鑫,夏晓舟,陈爱玖,章青. 考虑相变的近场动力学热-力耦合模型及多孔介质冻结破坏模拟. 力学学报. 2022(12): 3310-3318 .
![]() |