Citation: | LU Shifeng, FENG Shijin. Multi-field coupled model for solid-phase degradable soils and its numerical implementation using finite volume method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1438-1450. DOI: 10.11779/CJGE20220486 |
[1] |
张旭俊. 可降解土体BCHM耦合模型研究[D]. 杭州: 浙江大学, 2015.
ZHANG Xujun. Study on Bio-Chemical- Hydro-Mechanical Coupling Model in Degradable Soil[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
|
[2] |
陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001
CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001
|
[3] |
徐晓兵. 基于降解-渗流-压缩耦合模型的填埋场垃圾固液气相互作用分析及工程应用[D]. 杭州: 浙江大学, 2011.
XU Xiaobing. Bio-Hydro-Mechanical Coupled Analyses of Solid-liquid-Gas Interactions in Landfilled Municipal Solid Wastes and its Application[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
|
[4] |
陈云敏, 谢焰, 詹良通. 城市生活垃圾填埋场固液气耦合一维固结模型[J]. 岩土工程学报, 2006, 28(2): 184-190. doi: 10.3321/j.issn:1000-4548.2006.02.008
CHEN Yunmin, XIE Yan, ZHAN Liangtong. One-dimensional consolidation model for landfills considering solid-liquid-gas interaction[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 184-190. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.02.008
|
[5] |
薛强, 刘磊, 梁冰, 等. 垃圾填埋场沉降变形条件下气-水-固耦合动力学模型研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3473-3478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1133.htm
XUE Qiang, LIU Lei, LIANG Bing, et al. A gas-hydraulic-solid coupling dynamics model under landfill settlement[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3473-3478. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1133.htm
|
[6] |
薛强, 赵颖, 刘磊, 等. 垃圾填埋场灾变过程的温度–渗流–应力–化学耦合效应研究[J]. 岩石力学与工程学报, 2011, 30(10): 1970-1988. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110004.htm
XUE Qiang, ZHAO Ying, LIU Lei, et al. Study of thermo-hydro-mechanical-chemical coupling effect of catastrophe process of landfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 1970-1988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110004.htm
|
[7] |
LU S F, FENG S J, ZHENG Q T, et al. A multi-phase, multi-component model for coupled processes in anaerobic landfills: theory, implementation and validation[J]. Géotechnique, 2021, 71(9): 826-842. doi: 10.1680/jgeot.20.P.002
|
[8] |
CHEN Y M, XU W J, LING D S, et al. A degradation–consolidation model for the stabilization behavior of landfilled municipal solid waste[J]. Computers and Geotechnics, 2020, 118: 103341. doi: 10.1016/j.compgeo.2019.103341
|
[9] |
KUMAR G, REDDY K R, MCDOUGALL J. Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills[J]. Computers and Geotechnics, 2020, 128: 103836. doi: 10.1016/j.compgeo.2020.103836
|
[10] |
LI K, CHEN Y M, XU W J, et al. A thermo-hydro-mechanical-biochemical coupled model for landfilled municipal solid waste[J]. Computers and Geotechnics, 2021, 134: 104090. doi: 10.1016/j.compgeo.2021.104090
|
[11] |
LAI Y M, PEI W S, ZHANG M Y, et al. Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78: 805-819. doi: 10.1016/j.ijheatmasstransfer.2014.07.035
|
[12] |
凌贤长, 罗军, 耿琳, 等. 季节冻土区非饱和膨胀土水-热-变形耦合冻胀模型[J]. 岩土工程学报, 2022, 44(7): 1255-1265. doi: 10.11779/CJGE202207006
LING Xianzhang, LUO Jun, GENG Lin, et al. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265. (in Chinese) doi: 10.11779/CJGE202207006
|
[13] |
DE LA FUENTE M, VAUNAT J, MARÍN-MORENO H. Thermo-hydro-mechanical coupled modeling of methane hydrate-bearing sediments: formulation and application[J]. Energies, 2019, 12(11): 2178. doi: 10.3390/en12112178
|
[14] |
GUPTA S, HELMIG R, WOHLMUTH B. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences, 2015, 19(5): 1063-1088. doi: 10.1007/s10596-015-9520-9
|
[15] |
REDDY K R, KUMAR G, GIRI R K. Modeling coupled hydro-bio-mechanical processes in bioreactor landfills: framework and validation[J]. International Journal of Geomechanics, 2018, 18(9): 04018102. doi: 10.1061/(ASCE)GM.1943-5622.0001164
|
[16] |
LU S F, FENG S J. Coupled bio-hydro-thermo-mechanical interactions of landfilled MSW based on a multi-phase, multi-component numerical model[J]. Computers and Geotechnics, 2022, 144: 104659. doi: 10.1016/j.compgeo.2022.104659
|
[17] |
LEWIS R W, SHREFLER B A. The finite element method in the static and dynamic deformation and consolidation of porous media[M]. 2nd ed. New York: John Wiley, 1998.
|
[18] |
LU S F, FENG S J. Comprehensive overview of numerical modeling of coupled landfill processes[J]. Waste Management (New York, N Y), 2020, 118: 161-179. doi: 10.1016/j.wasman.2020.08.029
|
[19] |
MASON I G. An evaluation of substrate degradation patterns in the composting process. Part 2: temperature-corrected profiles[J]. Waste Management (New York, N Y), 2008, 28(10): 1751-1765. doi: 10.1016/j.wasman.2007.06.019
|
[20] |
MCDOUGALL J R, PYRAH I C. Phase relations for decomposable soils[J]. Géotechnique, 2004, 54(7): 487-493. doi: 10.1680/geot.2004.54.7.487
|
[21] |
BENTE S. Interaction of Degradation, Deformation and Transport Processes in Municipal Solid Waste Landfills[D]. Braunschweig: Technische Universitat Braunschweig, 2011.
|
[22] |
MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
|
[23] |
WILKE C R, CHANG P. Correlation of diffusion coefficients in dilute solutions[J]. AIChE Journal, 1955, 1(2): 264-270. doi: 10.1002/aic.690010222
|
[24] |
CELIA M A, BINNING P. A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow[J]. Water Resources Research, 1992, 28(10): 2819-2828. doi: 10.1029/92WR01488
|
[25] |
KIM J, TCHELEPI H A, JUANES R. Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13/14/15/16): 1591-1606.
|
[26] |
TUKOVIĆ, IVANKOVIĆ A, KARAČ A. Finite-volume stress analysis in multi-material linear elastic body[J]. International Journal for Numerical Methods in Engineering, 2013, 93(4): 400-419. doi: 10.1002/nme.4390
|
[27] |
JASAK H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows[D]. London: Imperial College London, 1996.
|
[28] |
FENG S J, LU S F, CHEN H X, et al. Three-dimensional modelling of coupled leachate and gas flow in bioreactor landfills[J]. Computers and Geotechnics, 2017, 84: 138-151. doi: 10.1016/j.compgeo.2016.11.024
|
[29] |
LU S F, XIONG J H, FENG S J, et al. A finite-volume numerical model for bio-hydro-mechanical behaviors of municipal solid waste in landfills[J]. Computers and Geotechnics, 2019, 109: 204-219. doi: 10.1016/j.compgeo.2019.01.012
|
[30] |
JASAK H, JEMCOV A, TUKOVI´C Z. OpenFOAM: A C++ library for complex physics simulations[C]//International Workshop on Coupled Methods in Numerical Dynamics, 2007: 1-20.
|
[31] |
LIAKOPOULOS A. Transient Flow through Unsaturated Porous Media[D]. Berkeley: University of California, 1964.
|
[32] |
HU R, CHEN Y F, LIU H H, et al. A coupled two-phase fluid flow and elastoplastic deformation model for unsaturated soils: theory, implementation, and application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1023-1058. doi: 10.1002/nag.2473
|
[33] |
ASADI R, ATAIE-ASHTIANI B. A comparison of finite volume formulations and coupling strategies for two-phase flow in deforming porous media[J]. Computers and Geotechnics, 2015, 67: 17-32. doi: 10.1016/j.compgeo.2015.02.004
|
[34] |
IVANOVA L K, RICHARDS D J, SMALLMAN D J. The long-term settlement of landfill waste[J]. Proceedings of the Institution of Civil Engineers-Waste and Resource Management, 2008, 161(3): 121-133. doi: 10.1680/warm.2008.161.3.121
|
[35] |
IVANOVA L K, RICHARDS D J, SMALLMAN D J. Assessment of the anaerobic biodegradation potential of MSW[J]. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 2008, 161(4): 167-180. doi: 10.1680/warm.2008.161.4.167
|
[36] |
CHEN Y M, GUO R Y, LI Y C, et al. A degradation model for high kitchen waste content municipal solid waste[J]. Waste Management (New York, N Y), 2016, 58: 376-385. doi: 10.1016/j.wasman.2016.09.005
|