• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU Shifeng, FENG Shijin. Multi-field coupled model for solid-phase degradable soils and its numerical implementation using finite volume method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1438-1450. DOI: 10.11779/CJGE20220486
Citation: LU Shifeng, FENG Shijin. Multi-field coupled model for solid-phase degradable soils and its numerical implementation using finite volume method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1438-1450. DOI: 10.11779/CJGE20220486

Multi-field coupled model for solid-phase degradable soils and its numerical implementation using finite volume method

More Information
  • Received Date: April 21, 2022
  • Available Online: February 20, 2023
  • The internal interaction of solid-phase degradable soils is extremely complex, and analysis of its hydraulic- mechanical-thermal-chemical multi-field coupled behaviors is of great significance for analyzing the related engineering problems. Based on the basic theory of porous media, a multi-field coupled model is developed by incorporating the mass, momentum and energy conservation of the degradable soils characterized by a solid-liquid-gas three-phase system. The coupled model considers the degradation phase transition, liquid-gas migration, skeleton deformation and heat transfer. By selecting the liquid phase pressure, gas phase pressure, mass fraction of gas components, liquid solute concentration, temperature, skeleton displacement and porosity as the basically unknown variables, the finite volume method is used to numerically discretize the governing equations for the established coupled model, and sequentially the solving method is adopted to iteratively solve the coupled model. In addition, the corresponding numerical solver is developed. The simulations of sand column drainage tests, solute migration and heat transfer in porous media, and degradable municipal solid waste experiments are conducted to verify the correctness of the coupled model and the numerical solver. The model and program will help to enhance the understanding of the derivation of the governing equations, the determination of constitutive relations and the numerical implementation for the multi-field coupled model for the degradable soil. It also provides a basis for the development of multi-field coupled model of related degradable soils.
  • [1]
    张旭俊. 可降解土体BCHM耦合模型研究[D]. 杭州: 浙江大学, 2015.

    ZHANG Xujun. Study on Bio-Chemical- Hydro-Mechanical Coupling Model in Degradable Soil[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [2]
    陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001

    CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001
    [3]
    徐晓兵. 基于降解-渗流-压缩耦合模型的填埋场垃圾固液气相互作用分析及工程应用[D]. 杭州: 浙江大学, 2011.

    XU Xiaobing. Bio-Hydro-Mechanical Coupled Analyses of Solid-liquid-Gas Interactions in Landfilled Municipal Solid Wastes and its Application[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
    [4]
    陈云敏, 谢焰, 詹良通. 城市生活垃圾填埋场固液气耦合一维固结模型[J]. 岩土工程学报, 2006, 28(2): 184-190. doi: 10.3321/j.issn:1000-4548.2006.02.008

    CHEN Yunmin, XIE Yan, ZHAN Liangtong. One-dimensional consolidation model for landfills considering solid-liquid-gas interaction[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 184-190. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.02.008
    [5]
    薛强, 刘磊, 梁冰, 等. 垃圾填埋场沉降变形条件下气-水-固耦合动力学模型研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3473-3478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1133.htm

    XUE Qiang, LIU Lei, LIANG Bing, et al. A gas-hydraulic-solid coupling dynamics model under landfill settlement[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3473-3478. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1133.htm
    [6]
    薛强, 赵颖, 刘磊, 等. 垃圾填埋场灾变过程的温度–渗流–应力–化学耦合效应研究[J]. 岩石力学与工程学报, 2011, 30(10): 1970-1988. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110004.htm

    XUE Qiang, ZHAO Ying, LIU Lei, et al. Study of thermo-hydro-mechanical-chemical coupling effect of catastrophe process of landfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 1970-1988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110004.htm
    [7]
    LU S F, FENG S J, ZHENG Q T, et al. A multi-phase, multi-component model for coupled processes in anaerobic landfills: theory, implementation and validation[J]. Géotechnique, 2021, 71(9): 826-842. doi: 10.1680/jgeot.20.P.002
    [8]
    CHEN Y M, XU W J, LING D S, et al. A degradation–consolidation model for the stabilization behavior of landfilled municipal solid waste[J]. Computers and Geotechnics, 2020, 118: 103341. doi: 10.1016/j.compgeo.2019.103341
    [9]
    KUMAR G, REDDY K R, MCDOUGALL J. Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills[J]. Computers and Geotechnics, 2020, 128: 103836. doi: 10.1016/j.compgeo.2020.103836
    [10]
    LI K, CHEN Y M, XU W J, et al. A thermo-hydro-mechanical-biochemical coupled model for landfilled municipal solid waste[J]. Computers and Geotechnics, 2021, 134: 104090. doi: 10.1016/j.compgeo.2021.104090
    [11]
    LAI Y M, PEI W S, ZHANG M Y, et al. Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78: 805-819. doi: 10.1016/j.ijheatmasstransfer.2014.07.035
    [12]
    凌贤长, 罗军, 耿琳, 等. 季节冻土区非饱和膨胀土水-热-变形耦合冻胀模型[J]. 岩土工程学报, 2022, 44(7): 1255-1265. doi: 10.11779/CJGE202207006

    LING Xianzhang, LUO Jun, GENG Lin, et al. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265. (in Chinese) doi: 10.11779/CJGE202207006
    [13]
    DE LA FUENTE M, VAUNAT J, MARÍN-MORENO H. Thermo-hydro-mechanical coupled modeling of methane hydrate-bearing sediments: formulation and application[J]. Energies, 2019, 12(11): 2178. doi: 10.3390/en12112178
    [14]
    GUPTA S, HELMIG R, WOHLMUTH B. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences, 2015, 19(5): 1063-1088. doi: 10.1007/s10596-015-9520-9
    [15]
    REDDY K R, KUMAR G, GIRI R K. Modeling coupled hydro-bio-mechanical processes in bioreactor landfills: framework and validation[J]. International Journal of Geomechanics, 2018, 18(9): 04018102. doi: 10.1061/(ASCE)GM.1943-5622.0001164
    [16]
    LU S F, FENG S J. Coupled bio-hydro-thermo-mechanical interactions of landfilled MSW based on a multi-phase, multi-component numerical model[J]. Computers and Geotechnics, 2022, 144: 104659. doi: 10.1016/j.compgeo.2022.104659
    [17]
    LEWIS R W, SHREFLER B A. The finite element method in the static and dynamic deformation and consolidation of porous media[M]. 2nd ed. New York: John Wiley, 1998.
    [18]
    LU S F, FENG S J. Comprehensive overview of numerical modeling of coupled landfill processes[J]. Waste Management (New York, N Y), 2020, 118: 161-179. doi: 10.1016/j.wasman.2020.08.029
    [19]
    MASON I G. An evaluation of substrate degradation patterns in the composting process. Part 2: temperature-corrected profiles[J]. Waste Management (New York, N Y), 2008, 28(10): 1751-1765. doi: 10.1016/j.wasman.2007.06.019
    [20]
    MCDOUGALL J R, PYRAH I C. Phase relations for decomposable soils[J]. Géotechnique, 2004, 54(7): 487-493. doi: 10.1680/geot.2004.54.7.487
    [21]
    BENTE S. Interaction of Degradation, Deformation and Transport Processes in Municipal Solid Waste Landfills[D]. Braunschweig: Technische Universitat Braunschweig, 2011.
    [22]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [23]
    WILKE C R, CHANG P. Correlation of diffusion coefficients in dilute solutions[J]. AIChE Journal, 1955, 1(2): 264-270. doi: 10.1002/aic.690010222
    [24]
    CELIA M A, BINNING P. A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow[J]. Water Resources Research, 1992, 28(10): 2819-2828. doi: 10.1029/92WR01488
    [25]
    KIM J, TCHELEPI H A, JUANES R. Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13/14/15/16): 1591-1606.
    [26]
    TUKOVIĆ, IVANKOVIĆ A, KARAČ A. Finite-volume stress analysis in multi-material linear elastic body[J]. International Journal for Numerical Methods in Engineering, 2013, 93(4): 400-419. doi: 10.1002/nme.4390
    [27]
    JASAK H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows[D]. London: Imperial College London, 1996.
    [28]
    FENG S J, LU S F, CHEN H X, et al. Three-dimensional modelling of coupled leachate and gas flow in bioreactor landfills[J]. Computers and Geotechnics, 2017, 84: 138-151. doi: 10.1016/j.compgeo.2016.11.024
    [29]
    LU S F, XIONG J H, FENG S J, et al. A finite-volume numerical model for bio-hydro-mechanical behaviors of municipal solid waste in landfills[J]. Computers and Geotechnics, 2019, 109: 204-219. doi: 10.1016/j.compgeo.2019.01.012
    [30]
    JASAK H, JEMCOV A, TUKOVI´C Z. OpenFOAM: A C++ library for complex physics simulations[C]//International Workshop on Coupled Methods in Numerical Dynamics, 2007: 1-20.
    [31]
    LIAKOPOULOS A. Transient Flow through Unsaturated Porous Media[D]. Berkeley: University of California, 1964.
    [32]
    HU R, CHEN Y F, LIU H H, et al. A coupled two-phase fluid flow and elastoplastic deformation model for unsaturated soils: theory, implementation, and application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1023-1058. doi: 10.1002/nag.2473
    [33]
    ASADI R, ATAIE-ASHTIANI B. A comparison of finite volume formulations and coupling strategies for two-phase flow in deforming porous media[J]. Computers and Geotechnics, 2015, 67: 17-32. doi: 10.1016/j.compgeo.2015.02.004
    [34]
    IVANOVA L K, RICHARDS D J, SMALLMAN D J. The long-term settlement of landfill waste[J]. Proceedings of the Institution of Civil Engineers-Waste and Resource Management, 2008, 161(3): 121-133. doi: 10.1680/warm.2008.161.3.121
    [35]
    IVANOVA L K, RICHARDS D J, SMALLMAN D J. Assessment of the anaerobic biodegradation potential of MSW[J]. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 2008, 161(4): 167-180. doi: 10.1680/warm.2008.161.4.167
    [36]
    CHEN Y M, GUO R Y, LI Y C, et al. A degradation model for high kitchen waste content municipal solid waste[J]. Waste Management (New York, N Y), 2016, 58: 376-385. doi: 10.1016/j.wasman.2016.09.005
  • Other Related Supplements

Catalog

    Article views (334) PDF downloads (103) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return