• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUO Bing-jie, JING Xue-dong, FAN Zhang-lei, XIE Wei, DUAN Zhi-hua, XIE Zhen-hua. Mechanism of dynamic load of longwall mining under shallow room mining goaf[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1116-1123. DOI: 10.11779/CJGE201906016
Citation: HUO Bing-jie, JING Xue-dong, FAN Zhang-lei, XIE Wei, DUAN Zhi-hua, XIE Zhen-hua. Mechanism of dynamic load of longwall mining under shallow room mining goaf[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1116-1123. DOI: 10.11779/CJGE201906016

Mechanism of dynamic load of longwall mining under shallow room mining goaf

More Information
  • Received Date: July 19, 2018
  • Published Date: June 24, 2019
  • In order to explore the control mechanism of pressure appearing in the lower coal seam of shallow-buried coal bed with room mining goaf, to reduce the dynamic pressure of the working face through the room mining goaf, and to mitigate the risk caused by the coal pillar due to removal of hydraulic support, dynamic pressure characteristics of the 3-1 coal bed working face with longwall mining under the 2-2 coal bed room mining goaf are studied. The overburden structure of 3-1 coal seam is divided into four types. The theoretical analysis and simulation of similar materials are adopted to analyze the structure and motion models for the overlying strata under dynamic load, and to reveal the mechanism of dynamic pressure. Conclusions are as follows: with the stability of the room goaf, the double cantilever beam structures easily lead to the upper and lower key layers, and the fracture of the key stratum is the main reason for the formation of dynamic load. The unstable masonry beam structure with the instability of the main roof and the room pillars near the large coal pillar are not unstable. The instability of the structure is caused by the collapse of the lower coal seam, resulting in the dynamic ground pressure. The key block firstly slides due to instability, and two key blocks without force and trapezoidal weight of rock pillar above the coal pillar are directly applied on the working face, which causes the roof to fall behind. When the coal pillar cannot effectively support the above inverted trapezoidal rock pillar, the instability of trapezoidal rock pillar and crack movement of roof collapse cause dynamic load in common.
  • [1]
    霍丙杰, 范张磊, 谢伟, 等. 浅埋房式采空区覆岩结构及对下位煤层开采的影响[J].安全与环境学报, 2018, 18(2): 468-473.
    (HUO Bing-jie, FAN Zhang-lei, XIE Wei, et al.Overburdened structure frames of the room mining goaf in the shallow coal seam and its impact on the lower level mining[J]. Journal of Safety and Environment, 2018, 18(2): 468-473. (in Chinese))
    [2]
    解兴智. 浅埋煤层房柱式采空区下长壁开采矿压显现特征[J]. 煤炭学报, 2012, 37(6): 898-902.
    (XIE Xing-zhi.Study on the characteristics of strata behavior in shallow seam longwall mining under the room-and-pillar mining goaf[J]. Journal of China Coal Society, 2012, 37(6): 898-902. (in Chinese))
    [3]
    解兴智, 范志忠. 房柱采空区下长壁开采工作面支架支护强度研究[J]. 煤矿开采, 2014, 19(4): 108-111.
    (XIE Xing-zhi, FAN Zhi-zhong.Supporting density of long-wall mining face under room-and-pillar gob[J]. Coal Mining Technology, 2014, 19(4): 108-111. (in Chinese))
    [4]
    孔令海, 王永仁, 李少刚. 房柱采空区下回采工作面覆岩运动规律研究[J]. 煤炭科学技术, 2015, 43(5): 26-29.
    (KONG Ling-hai, WANG Yong-ren, LI Shao-gang.Analysis on overburden strata movement law of coal mining face under goaf of room and pillar mining face[J]. Coal Science and Technology, 2015, 43(5): 26-29. (in Chinese))
    [5]
    杨真, 童兵, 黄成成, 等. 近距离房柱采空区下长壁采场顶板垮落特征研究[J]. 采矿与安全工程学报, 2012, 29(2): 157-161.
    (YANG Zhen, TONG Bing, HUANG Cheng-cheng, et al.Study on the movement law of overlying strata in mining face under room and pillar goaf[J]. Journal of Mining & Safety Engineering, 2012, 29(2): 157-161. (in Chinese))
    [6]
    杨治林. 浅埋煤层长壁开采顶板岩层灾害控制研究[J]. 岩土力学, 2011, 29(增刊1): 459-463.
    (YANG Zhi-lin.Study of controlling catastrophe for roof strata in shallow seam longwall mining[J]. Rock and Soil Mechanics, 2011, 29(S1): 459-463. (in Chinese))
    [7]
    李浩荡, 杨汉宏, 张斌, 等. 浅埋房式采空区集中煤柱下综采动载控制研究[J]. 煤炭学报, 2015, 40(增刊1): 6-11.
    (LI Hao-dang, YANG Han-hong, ZHANG Bin, et al.Control study of strong strata behaviors during the fully mechanized working face out of concentrated coal pillar in a shallow depth seam in proximity beneath a room mining goaf[J]. Journal of China Coal Society, 2015, 40(S1): 6-11. (in Chinese))
    [8]
    杨俊哲. 浅埋近距离煤层过上覆采空区及煤柱动压防治技术[J]. 煤炭科学技术, 2015, 43(6): 9-13,40.(YANG Jun-zhe. Dynamic pressure prevention and control technology of coal mining face with shallow depth and contiguous seams passing through overburden goaf and coal pillars[J]. Coal Science and Technology, 2015, 43(6): 9-13, 40. (in Chinese))
    [9]
    鞠金峰, 许家林. 倾向煤柱边界超前失稳对工作面出煤柱动载矿压的影响[J]. 煤炭学报, 2012, 37(7): 1080-1087.
    (JU Jin-feng, XU Jia-lin.Influence of leading instability in the upper dip coal pillar boundary to the strong strata behaviors during the working face out of the pillar[J]. Journal of China Coal Society, 2012, 37(7): 1080-1087. (in Chinese))
    [10]
    鞠金峰, 许家林. 浅埋近距离煤层出煤柱开采压架防治对策[J]. 采矿与安全工程学报, 2013, 30(3): 323-330.
    (JU Jin-feng, XU Jia-lin.Prevention measures for support crushing while mining out the upper coal pillar in close distance shallow seams[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 323-330. (in Chinese))
    [11]
    鞠金峰, 许家林, 朱卫兵, 等. 近距离煤层工作面出倾向煤柱动载矿压机理研究[J]. 煤炭学报, 2010(1): 15-20.
    (JU Jin-feng, XU Jia-lin, ZHU Wei-bing, et al.Mechanism of strong strata behaviors during the working faceout of the upper dip coal pillar in contiguous seams[J]. Journal of China Coal Society, 2010(1): 15-20. (in Chinese))
    [12]
    鞠金峰, 许家林, 朱卫兵, 等. 大柳塔煤矿22103综采面压架机理及防治技术[J]. 煤炭科学技术, 2012, 40(2): 4-7.
    (JU Jin-feng, XU Jia-lin, ZHU Wei-bing, et al.Hydraulic powered support jammed mechanism and prevention technology of fully mechanized coal mining face in Daliuta mine[J]. Coal Science and Technology, 2012, 40(2): 4-7. (in Chinese))
    [13]
    许家林, 朱卫兵, 鞠金峰. 浅埋煤层开采压架类型[J]. 煤炭学报, 2014, 39(08): 1625-1634.
    (XU Jia-lin, ZHU Wei-bing, JU Jin-feng.Supports crushing types in the longwall mining of shallow seams[J]. Journal of China Coal Society, 2014, 39(08): 1625-1634. (in Chinese))
    [14]
    付兴玉, 李宏艳, 李凤明, 等. 房式采空区集中煤柱诱发动载矿压机理及防治[J]. 煤炭学报, 2016, 41(6): 1375-1383.
    (FU Yu-xing, LI Hong-yan, LI Feng-ming, et al.Mechanism and prevention of strong strata behaviors induced by the concentration coal pillar of a room mining goaf[J]. Journal of China Coal Society, 2016, 41(6): 1375-1383. (in Chinese))
    [15]
    田臣, 刘英杰, 周海丰. 综采工作面回采过上覆集中煤柱及采空区技术[J]. 煤炭科学技术, 2014, 42(8): 125-128.
    (TIAN Chen, LIU Ying-jie, ZHOU Hai-feng.Technology of fully-mechanized coal mining face passing through overburden concentrated coal pillar and goaf[J]. Coal science and Technology, 2014, 42(8): 125-128. (in Chinese))
    [16]
    徐敬民, 朱卫兵, 鞠金峰. 浅埋房采区下近距离煤层开采动载矿压机理[J]. 煤炭学报, 2017, 42(2): 500-509.
    (XU Jing-min, ZHU Wei-bing, JU Jin-feng.Mechanism of dynamic mine pressure occurring below adjacent upper chamber mining goaf with shallow cover depth[J]. Journal of China Coal Society, 2017, 42(2): 500-509. (in Chinese))
    [17]
    朱卫兵. 浅埋近距离煤层重复采动关键层结构失稳机理研究[D]. 徐州: 中国矿业大学, 2010.
    (ZHU Wei-bing.Study on the instability mechanism of key strata structure in repeat mining of shallow close distance seams[D]. Xuzhou: China University of Mining and Technology, 2010. (in Chinese))
    [18]
    ZHU W B, XU J M, LI Y C.Mechanism of the dynamic pressure caused by the instability of upper chamber coal pillars in Shendong coalfield, China[J]. Geosciences Journal, 2017, 21(5): 729-741.
    [19]
    朱德福, 屠世浩, 王方田, 等. 浅埋房式采空区煤柱群稳定性评价[J]. 煤炭学报, 2018, 43(2): 390-397.
    (ZHU De-fu, TU Shi-hao, WANG Fang-tian, et al.Stability evaluation on pillar system of room and pillar mining in goaf at shallow depth seam[J]. Journal of China Coal Society, 2018, 43(2): 390-397. (in Chinese))
    [20]
    刘畅, 刘正和, 张俊文, 等.工作面长度对覆岩空间结构演化及大采高采场矿压规律的影响[J]. 岩土力学, 2018, 39(2): 691-698.
    (LIU Chang, LIU Zheng-he, ZHANG Jun-wen, et al.Effect of mining face length on the evolution of spatial structure of overlying strata and the law of underground pressure in large mining height face[J]. Rock and Soil Mechanics, 2018, 39(2): 691-698. (in Chinese))
    [21]
    钱鸣高, 缪协兴. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(3): 225-230.
    (QIAN Ming-gao, MIAO Xie-xing.Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996(3): 225-230. (in Chinese))
    [22]
    许家林, 朱卫兵, 王晓振, 等. 浅埋煤层覆岩关键层结构分类[J]. 煤炭学报, 2009(7): 865-870.
    (XU Jia-lin, ZHU Wei-bing, WANG Xiao-zhen, et al.Classification of key stratastructure of overlying strata in shallow coal seam[J]. Journal of China Coal Society, 2009(7): 865-870. (in Chinese))
    [23]
    王方田, 屠世浩, 李召鑫, 等. 浅埋煤层房式开采遗留煤柱突变失稳机理研究[J]. 采矿与安全工程学报, 2012, 29(6): 770-775.
    (WANG Fang-tian, TU Shi-hao, LI Shao-Xin, et al.Mutation instability mechanism of the room mining residual pillars in the shallow depth seam[J]. Journal of Mining & Safety Engineering, 2012, 29(6): 770-775. (in Chinese))
    [24]
    钱鸣高, 张顶立, 黎良杰, 等. 砌体梁的“S—R”稳定及其应用[J]. 矿山压力与顶板管理, 1994(3): 6-11,80. (QIAN Ming-gao, ZHANG Ding-li, LI Liang-jie, et al. “S-R” stability for the voussoir beam and its application[J]. Ground Pressure and Strata Control, 1994(3): 6-11, 80. (in Chinese))
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (191) PDF downloads (110) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return