• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Rui-an, ZHANG Yong-shuang, GUO Chang-bao, YANG Zhi-hua, REN San-shao, CHEN Peng. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659-1667. DOI: 10.11779/CJGE201809012
Citation: WU Rui-an, ZHANG Yong-shuang, GUO Chang-bao, YANG Zhi-hua, REN San-shao, CHEN Peng. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659-1667. DOI: 10.11779/CJGE201809012

Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province

More Information
  • Received Date: October 10, 2017
  • Published Date: September 24, 2018
  • Affected by the intensifying human activities and frequent occurrence of extreme climate in recent years, the problem of ancient landslide reactivation is increasingly prominent, threatening the local engineering facilities and urban security. Based on the Shangyaogou ancient landslide in the east margin of the Tibetan Plateau, the reactivation characteristics are analyzed, and the instability probability of the landslide under different rainfall conditions for return period is calculated. In addition, DAN3D software is used to simulate the movement process and accumulation scope of the sliding mass, and assess the landslide hazard. The results show that: (1) A local part H1 has been reactivated in the front of the ancient landslide due to heavy rainfall and foot erosion, presenting the activity characteristics of multi-stage and multi-period. At present, the deformations on the slope are obvious, and have a potential for further instability. (2) H1 is in an unstable state under the condition of 20 years of continuous rainfall in 10 days with the instability probability of 99.12%. The posterior part H2 is highly likely to follow H1 and move downslope under the condition of 100 years of continuous rainfall in 10 days with the instability probability of 96.36%. (3) The farthest movement distance is about 350 m when only the reactivated part H1 moves, and the forefront of the landslide deposits will not reach the residential areas. (4) When the posterior part H2 moves following the reactivated part H1, the farthest movement distance is about 550 m. For the residential areas, the fan area from the head of the drainage channel to the national road G213 with a radius of about 150 m is considered to have a high hazard risk of landslide-debris flow.
  • [1]
    杨为民, 黄晓, 张永双, 等. 甘肃南部坪定—化马断裂带滑坡变形特征及其防治[J]. 地质通报, 2013, 32(12): 1925-1935.
    (YANG Wei-ming, HUANG Xiao, ZHANG Yong-shuang, et al.The deformation characteristics of the landslide along Pingding-Huama active fault zone and its prevention and control[J]. Geological Bulletin of China, 2013, 32(12): 1925-1935. (in Chinese))
    [2]
    李明辉, 郑万模, 石胜伟, 等. 丹巴县甲居滑坡复活机制及其稳定性分析[J]. 山地学报, 2008, 26(5): 577-582.
    (LI Ming-hui, ZHENG Wan-mo, SHI Sheng-wei, et al.The revival mechanism and stability analysis to Jiaju landslide of Danba county in Sichuan province[J]. Journal of Mountain Science, 2008, 26(5): 577-582. (in Chinese))
    [3]
    张永双, 郭长宝, 周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报, 2013, 35(3): 445-453.
    (ZHANG Yong-shuang, GUO Chang-bao, ZHOU Neng-juan.Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445-453. (in Chinese))
    [4]
    CRUDEN D M, VARNES D J.Landslide types and processes, special report, transportation research board[J]. National Academy of Sciences, 1996, 247: 36-75.
    [5]
    BURDA J, HARTVICH F, VALENTA J, et al.Climate- induced landslide reactivation at the edge of the Most Basin (Czech Republic): progress towards better landslide prediction[J]. Natural Hazards and Earth System Sciences, 2013, 13: 361-374.
    [6]
    NEGI I S, KUMAR K, KATHAIT A, et al.Cost assessment of losses due to recent reactivation of Kaliasaur landslide on National Highway 58 in Garhwal Himalaya[J]. Natural Hazards, 2013, 68: 901-914.
    [7]
    RONCHETTI F, BORGATTI L, CERVI F, et al.The Valoria landslide reactivation in 2005-2006 (Northern Apennines, Italy)[J]. Landslides, 2007, 4: 189-195.
    [8]
    DENG H, WU L Z, HUANG R Q, et al.Formation of the Siwanli ancient landslide in the Dadu River, China[J]. Landslides, 2016: 1-10.
    [9]
    邓建辉, 陈菲, 尹虎, 等. 泸定县四湾村滑坡的地质成因与稳定评价[J]. 岩石力学与工程学报, 2007, 26(10): 1945-1950.
    (DENG Jian-hui, CHEN Fei, YIN Hu, et al.Geological origin and stability evaluation of siwancun landslide in luding county[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 1945-1950. (in Chinese))
    [10]
    郭健, 许模, 赵勇, 等. 黑水河库区某古滑坡形成及复活机制[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 721-728.
    (GUO Jian, XU Mo, ZHAO Yong, et al.Formation and reactivation mechanism of an ancient landslide in Heishui reservoir of Minjiang River, China[J]. Journal of Chengdu University of Technology, 2013, 40(6): 721-728. (in Chinese))
    [11]
    李明辉, 李浩然, 王东辉. 大渡河上游亚喀则滑坡复活变形机理及发展趋势分析[J]. 水土保持研究, 2014, 21(1): 305-309.
    (LI Ming-hui, LI Hao-ran, WANG Dong-hui.The revival mechanism and development tendency of Yakaze landslide in the upper reaches of Dadu River[J]. Research of Soil and Water Conservation, 2014, 21(1): 305-309. (in Chinese))
    [12]
    付博, 严明, 李波, 等. 岷江某水电站库区#1 滑坡复活机制分析[J]. 工程地质学报, 2008, 16(1): 11-16.
    (FU Bo, YAN Ming, LI Bo, et al.Analysis of revivification mechanism for a landslide on a hydropower station reservoir in Minjiang[J]. Journal of Engineering Geology, 2008, 16(1): 11-16. (in Chinese))
    [13]
    司建涛, 刘顺. 青藏高原东缘岷江断裂构造特征、变形序列和演化历史[J]. 四川地质学报, 2008, 28(1): 1-5.
    (SI Jian-tao, LIU Shun.Geological features, deformation sequence and evolution of the Minjiang fault on the eastern margin of the Qinghai-Tibet Plateau[J]. Acta Geologica Sichuan, 2008, 28(1): 1-5. (in Chinese))
    [14]
    KUENZA K, TOWHATA I, ORENSE R P, et al.Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004, 1(3): 185-194.
    [15]
    GEO-SLOPE International Ltd. Seepage modeling with SEEP/W 2007 version: an engineering methodology[M]. 3rd ed. Calgary: GEO-SLOPE International Ltd, 2008.
    [16]
    李强, 管昌生, 周武. 基于Monte-Carlo法的滑坡稳定可靠性分析[J].岩石力学与工程学报, 2001, 20(增刊): 1674-1676.
    (LI Qiang, GUAN Chang-sheng, ZHOU Wu.Reliability analysis of landslide stability by Monte-Carlo method[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(S0): 1674-1676. (in Chinese))
    [17]
    邓志平, 李典庆, 曹子君, 等. 考虑地层变异性和土体参数变异性的边坡可靠度分析[J]. 岩土工程学报, 2017, 39(6): 986-996.
    (DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, et al.Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-996. (in Chinese))
    [18]
    吴迪, 简文彬, 徐超. 残积土抗剪强度的环剪试验研究[J]. 岩土力学, 2011, 32(7): 2045-2050.
    (WU Di, JIAN Wen-bin, XU Chao.Research on shear strength of residual soils by ring shear tests[J]. Rock and Soil Mechanics, 2011, 32(7): 2045-2050. (in Chinese))
    [19]
    李小伟, 吴益平, 张荣, 等. 滑带土抗剪强度特性的环剪试验研究[J]. 科学技术与工程, 2014, 14(27): 273-277.
    (LI Xiao-wei, WU Yi-ping, ZHANG Rong, et al.Research on shear strength behavior of slide zone soil in ring shear tests[J]. Science Technology and Engineering, 2014, 14(27): 273-277. (in Chinese))
    [20]
    GB/T 32864—2016 滑坡防治工程勘查规范[S]. 2016.
    (GB/T 32864—2016 Code for geological investigation of landslide prevention[S]. 2016. (in Chinese))
    [21]
    SALVATICI T, MORELLI S, PAZZI V, et al.Debris flow hazard assessment by means of numerical simulations: implications for the Rotolon creek valley (Northern Italy)[J]. Journal of Mountain Science, 2017, 14(4): 636-648.
    [22]
    MCDOUGALL S, HUNGR H.A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41: 1084-1097.
    [23]
    HUNGR O, EVANS S G.Rock avalanche runout prediction using a dynamic model[C]// Proceedings of the 7th International Symposium on Landslides. Rotterdam, 1996.
    [24]
    王国章, 李滨, 冯振, 等. 重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J]. 水文地质工程地质, 2014, 41(5): 101-106.
    (WANG Guo-zhang, LI Bin, FENG Zhen, et al.Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology and Engineering Geology, 2014, 41(5):101-106. (in Chinese))
    [25]
    齐超, 邢爱国, 殷跃平, 等. 东河口高速远程滑坡-碎屑流全程动力特性模拟[J]. 工程地质学报, 2012, 20(3): 334-339.
    (QI Chao, XING Ai-guo, YIN Yue-ping, et al.Numerical simulation of dynamic behavior of Donghekou rockslide-debris avalanche[J]. Journal of Engineering Geology, 2012, 20(3): 334-339. (in Chinese))
    [26]
    PIRULLI M.The Thurwieser rock avalanche (Italian Alps): Description and dynamic analysis[J]. Engineering Geology, 2009, 109(1/2): 80-92.
    [27]
    PIRULLI M, SCAVIA C, HUNGR O.Determination of rock avalanche run-out parameters through back analyses[C]// Proceedings of the 9th International Symposium on Landslides. London, 2004: 1361-1366.
    [28]
    CROSTA G B, CHEN H, FRATTINI P.Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches[J]. Engineering Geology, 2006, 83: 236-253.
    [29]
    SOSIO R, CROSTA G B, HUNGR O.Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)[J]. Engineering Geology, 2008, 100(1/2): 11-26.
    [30]
    YIN Y P, CHENG Y L, LIANG J T, et al.Heavy-rainfall- induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J]. Landslides, 2015, 13(1): 9-23.
    [31]
    王磊, 李滨, 高杨, 等. 大型厚层崩滑体运动特征模拟研究: 以重庆武隆县羊角场镇大巷危岩为例[J]. 地学前缘, 2016, 23(2): 251-259.
    (WANG Lei, LI Bin, GAO Yang, et al.Run-out prediction of large thick-bedded unstable rock: a case study of Daxiang unstable rock in Yangjiao town, Wulong county, Chongqing[J]. Earth Science Frontiers, 2016, 23(2): 251-259. (in Chinese))
    [32]
    HUNGR O.A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 1995, 32(4): 610-623.
  • Related Articles

    [1]ZHOU Jie, ZHU Kefan, LIU Chengjun, SHEN Panpan. Shear characteristics of steel pile-soft clay interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 49-53. DOI: 10.11779/CJGE2024S20038
    [2]FU Zhongzhi, WANG Li'an, CHEN Jinyi, ZHANG Yijiang. Constitutive model for interface between concrete slab and rockfill and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2305-2313. DOI: 10.11779/CJGE20230758
    [3]LI Shu-zhao, WANG Jian-hua. Numerical method for the deformation of suction anchor under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2203-2211. DOI: 10.11779/CJGE201612008
    [4]FENG Da-kuo, ZHANG Jian-min. Particle breakage of gravel-structure interface under cyclic shear[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 767-773.
    [5]ZHOU Aizhao, LU Tinghao. Elasto-plastic constitutive model of interface based on generalized potential theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1532-1536.
    [6]HOU Wenjun, ZHANG Ga, ZHANG Jianmin. Behavior of interface between extrusion-sidewall and slab face of CFRD[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1356-1360.
    [7]ZHANG Ga, ZHANG Jianmin. Unified modeling of soil-structure interface and its test confirmation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1175-1179.
    [8]ZHANG Ga, ZHANG Jianmin. Monotonic and cyclic constitutive law of interface between structure and coarse grained soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 516-520.
    [9]ZHANG Ga, ZHANG Jianmin. Experimental study on cyclic behavior of interface between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 254-258.
    [10]Zhang Dongji, Lu Tinghao. Establishment and application of a interface model between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 65-69.
  • Cited by

    Periodical cited type(2)

    1. 熊树森,黄蕴晗,赖莹. 考虑锚胫作用下拖曳锚在成层土中的嵌入机制. 岩土力学. 2024(05): 1495-1504 .
    2. 李健,张保良,邢国起,孟昭博,耿毅,张晓彤. 拖曳锚安装过程嵌入轨迹研究进展. 潍坊学院学报. 2023(02): 31-35 .

    Other cited types(2)

Catalog

    Article views (327) PDF downloads (196) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return