• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Shu-zhao, WANG Jian-hua. Numerical method for the deformation of suction anchor under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2203-2211. DOI: 10.11779/CJGE201612008
Citation: LI Shu-zhao, WANG Jian-hua. Numerical method for the deformation of suction anchor under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2203-2211. DOI: 10.11779/CJGE201612008

Numerical method for the deformation of suction anchor under cyclic loading

More Information
  • Received Date: October 12, 2015
  • Published Date: December 24, 2016
  • The suction anchor with taut mooring system is an important floating platform foundation in deep water. Large deformation of soil occurs under the combination of static and cyclic loadings, which impacts the stability of the suction anchor foundation severely. A pseudo-dynamic visco-elastic plastic constitutive model which describes the undrained cyclic stress-strain response of saturated soft clay is introduced. The model combines the equivalent visco-elastic theory with the creep theory, describing the nonlinearity and hysteresis of the cyclic stress-strain relationship through the equivalent visco-elastic model and the cyclic accumulative characteristic through the creep theory. Based on the pseudo-dynamic visco-elastic plastic constitutive model, a pseudo-dynamic visco-elastic plastic finite element method is developed for the assessment of the deformation process of the suction anchor foundation subjected to the combination of the static and cyclic loadings. The method does not track the cyclic stress-strain response, but treats the number of cycles as the time. The cyclic deformation of anchor foundation is determined by the equivalent visco-elastic calculation. The accumulative deformation is determined using the initial strain method on the basis of the static stress and cyclic accumulative strain potential. The relationship between the deformation and the time of anchor foundation that is the displacement-time history curve can be obtained according to the cyclic and accumulative deformations. The comparison between the calculated results by the finite element method and the anchor model test results under 1g conditions shows that the both are basically in agreement.
  • [1]
    AUDIBERT J M E, CLUKEY E C, HUANG J. Suction caisson installation at Horn Mountain: A case history[C]// Proceedings of the 13th International Offshore and Polar Engineering Conference. Honolulu, 2003.
    [2]
    El-SHERBINY R M. Performance of suction caisson anchors in normally consolidated clay[D]. Austin: University of Texas at Austin, 2005.
    [3]
    谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011. (XIE Ding-yi. Soil dynamics[M]. Beijing: Highter Education Press, 2011. (in Chinese))
    [4]
    KUWANO J, ISHIHARA K. Analysis of permanent deformation of earth dams due to earthquakes[J]. Soils and Foundations, 1988, 28(1): 44-55.
    [5]
    KUWANO J, ISHIHARA K, HAYA H. Analysis on permanent deformation of embankments caused by earthquakes[J]. Soils and Foundations, 1991, 31(3): 97-110.
    [6]
    刘汉龙, 陆兆溱. 土石坝地震永久变形分析[J]. 河海大学学报, 1996, 24(1): 91-96. (LIU Han-long, LU Zhao-zhen. Earthquake-induced permanet deformation of earth-rock dams[J]. Journal of Hohai University, 1996, 24(1): 91-96. (in Chinese))
    [7]
    SERFF N, SEED H B, MAKDISI F I. Earthquake induced deformations of earth dams[R]. Berkeley: Earthquake Engineering Research Center, University of California, 1976.
    [8]
    张克旭, 李明宰. 地震引起的土坝永久变形的分析[C]// 建筑物及地震抗震学术讨论会. 北京, 1986: 392-401. (ZHANG Ke-xu, LI Ming-zai. Analysis of permanent deformation of dam induced earthquake[C]// Architecture and Aseismic Symposium. Beijing, 1986: 392-401. (in Chinese))
    [9]
    TANIGUCHI F, WHITMAN R V, MARR W A. Prediction of earthquake induced deformation of earth dams[J]. Soils and Foundations, 1983, 23(4): 126-132.
    [10]
    BOUCKOVALAS G, WHITMAN R V, MARR W A. Permanent displacement of sand with cyclic loading[J]. ASCE, Journal of Geotechnical Engineering, 1984, 110(11): 1606-1623.
    [11]
    BOUCKOVALAS G, MARR W A, CHRISTIAN J T. Analyzing permanent drift due to cyclic loads[J]. ASCE, Journal of Geotechnical Engineering, 1986, 112(6): 579-593.
    [12]
    贺林林, 王元战. 饱和软黏土循环累积变形简化计算方法研究[J]. 水利学报, 2015, 46(1): 183-187. (HE Lin-lin, WANG Yuan-zhan. Research on simplified calculation method of cyclic cumulative deformation of saturated soft clay[J]. Journal of Hydraulic Engineering, 2015, 46(1): 183-187. (in Chinese))
    [13]
    胡 存, 刘海笑. 考虑循环荷载下饱和黏土软化的损伤边界面模型研究[J]. 岩土力学, 2012, 33(2): 460-466. (HU Cun, LIU Hai-xiao. Damage-dependent bounding surface model for cyclic degradation of saturated clay[J]. Rock and Soil Mechanics, 2012, 33(2): 460-466. (in Chinese))
    [14]
    胡 存. 适用于饱和黏土循环动力分析的边界面塑性模型及应用[D]. 天津: 天津大学, 2012. (HU Cun. Anisotropic bounding-surface plasticity model for cyclic behaviors of saturated clay and its application[D]. Tianjin: Tianjin University, 2012. (in Chinese))
    [15]
    李 涛. 循环荷载作用下饱和黏性土的弹塑性双面模型[J]. 土木工程学报, 2006, 39(1): 92-97. (LI Tao. Elasto-plastic two surface model for clays under undrained cyclic loading[J]. China Civil Engineering Journal, 2006, 39(1): 92-97. (in Chinese))
    [16]
    刘晶磊. 循环荷载作用下软黏土中张紧式吸力锚承载力研究[D]. 天津: 天津大学, 2011. (LIU Jing-lei. Study on bearing capacity of suction anchors with taut mooring systems in soft clay under cyclic loading[D]. Tianjin: Tianjin University, 2011. (in Chinese))
    [17]
    穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990. (MU Xia-ying. Creep mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1990. (in Chinese))
    [18]
    谢贻权, 何福保. 弹性和塑性力学中的有限单元法[M]. 北京: 机械工业出版社, 1983. (XIE Yi-quan, HE Fu-bao. Finite element method in elastic and plastic mechanics[M]. Beijing: Mechnice Industry Press, 1983. (in Chinese))
    [19]
    王建华, 李书兆. 描述软土不排水循环应力应变响应的拟动力关系[J]. 地震工程学报, 2014, 36(3): 421-428. (WANG Jian-hua, LI Shu-zhao. A pseudo-dynamic relationship for describing the cyclic stress-strain response of soft clays in undrained conditions[J]. China Earthquake Engineering Journal, 2014, 36(3): 421-428. (in Chinese))
  • Related Articles

    [1]Mechanical behavior and mesoscopic failure mechanism of high-temperature granite under different cooling methods in Brazilian tensile tests[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241039
    [2]DENG Ming-jiang, CAI Zheng-yin, ZHU Xun, ZHANG Chen. Failure mechanism and reinforcement measures of shallow slopes of expansive soils in Northern Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 50-55. DOI: 10.11779/CJGE2020S2009
    [3]MA Yan, WANG Jia-ding, PENG Shu-jun, LI Bin. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 518-528. DOI: 10.11779/CJGE201603016
    [4]WANG Lin-feng, CHEN Hong-kai, TANG Hong-mei. Mechanical mechanism of failure for anti-inclined rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 884-889.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LI Hong-wei. Deformation and failure mechanism of steeply dipping bedding high slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 146-151.
    [7]HUANG Zhiping, TANG Chunan, ZHU Wancheng, PANG Mingzhang. Numerical simulation on failure modes of rock bars under different wave lengths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1048-1053.
    [8]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.
    [9]LIU Hongyuan, LIU Jianxin, TANG Chunan. Numerical simulation of failure process of overburden rock strata caused by mining excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 201-204.
    [10]Huang Jianan, Wang Sijing. Numerical Analysis of Fracture Mechanics for Rock Mass with Discrete Joints[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(3): 39-52.
  • Cited by

    Periodical cited type(14)

    1. 黄正均,武旭,郭国龙,马驰,张栋. 非贯通断续节理岩石剪切力学特性及破坏机理研究. 中国测试. 2025(02): 19-29+38 .
    2. 刘婷婷,曾乐乐,张超,李新平,杨婷,张腾胜. 节理分布形式对交叉节理岩体动态力学特性与破坏模式影响研究. 岩石力学与工程学报. 2024(01): 90-102 .
    3. 陈浩南,朱泽奇,庞鑫,万道春,夏禄清,张少军. 岩石卸荷的Mogi-Coulomb强度准则适用性研究. 力学与实践. 2024(03): 602-608 .
    4. 陈毅. 深埋硬岩隧道结构面对岩爆破坏特征的影响研究. 水电能源科学. 2024(07): 105-108+72 .
    5. 杜岩,张洪达,谢谟文,蒋宇静,李双全,刘敬楠. 大型危岩体崩塌灾害早期监测预警技术研究综述. 工程科学与技术. 2024(05): 10-23 .
    6. 孙杰龙,陈锐,李晓敏,邱明明,曹雪叶,王银. 单轴压缩下饱和裂隙红砂岩力学特性试验及PFC~(2D)模拟. 延安大学学报(自然科学版). 2024(04): 114-120 .
    7. 高美奔,李天斌,陈国庆,孟陆波,马春驰,张岩,阴红宇,钟雨奕. 基于岩石峰前起裂及峰后特征的脆性评价方法. 岩土工程学报. 2022(04): 762-768 . 本站查看
    8. 刘先林,范杰,朱觉文,李明智,朱星. 单轴压缩下岩桥脆性断裂的临界慢化特征. 水利水电技术(中英文). 2022(03): 166-175 .
    9. 王刚,宋磊博,刘夕奇,包春燕,吝曼卿,刘广建. 非贯通节理花岗岩剪切断裂力学特性及声发射特征研究. 岩土力学. 2022(06): 1533-1545 .
    10. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    11. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 .
    12. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 .
    13. 李博,叶鹏进,黄林,王丁,赵程,邹良超. 干燥与饱和岩石裂隙受压变形与声发射特性研究. 岩土工程学报. 2021(12): 2249-2257 . 本站查看
    14. 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究. 中国安全生产科学技术. 2020(09): 116-121 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return