• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Yan, WANG Jia-ding, PENG Shu-jun, LI Bin. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 518-528. DOI: 10.11779/CJGE201603016
Citation: MA Yan, WANG Jia-ding, PENG Shu-jun, LI Bin. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 518-528. DOI: 10.11779/CJGE201603016

Deformation and failure mechanism of high sticking loess slope

More Information
  • Received Date: January 28, 2015
  • Published Date: March 24, 2016
  • Loess high sticking slopes have become a popular construction solution for engineering land in loess ridge landform area. The failures of those slopes have encouraged the studies on deformation and failure mechanisms of such artificial slopes. In this research, a high sticking slope failure is used as a case study. Based on the in-situ investigation and geological engineering survey, the stratigraphic structure features and impact factors of slope stability are analyzed. According to the analysis results, the corresponding laboratory tests are conducted, such as compacted loess wetting compression tests, deeply buried Q2 loess collapsibility tests, and loess triaxial tests with CTC and RTC stress paths. The deformation and failure mechanisms of high loess sticking slopes are studied from the in-situ and laboratory test data. The results indicate that the fluctuation of bed stratum causes various fill thicknesses, which further induce differential settlements and cracking on the slope shoulder. Water infiltration into the crack will then trigger deformation and failure. The failure mode of high sticking slopes is summarized: the differential settlement induced by consolidation of compacted loess and collapse of Q2 loess under high pressure causes cracks of slope shoulder→water infiltration into cracks softens the compacted loess→the initial sliding surface forms in the middle of slope→the front part of loess fails under wetting CTC stress path→the back part of loess fails under wetting RTC stress path→the locking section loess failes under wetting CTC stress path→the whole slope fails. These results are helpful for understanding the formation and evolution of failure of high loess sticking slopes, and may provide technical support to the treatment of loess slope stability.
  • [1]
    张卫兵. 黄土高填方路堤沉降变形规律与计算方法的研究[D]. 西安: 长安大学, 2007. (ZHANG Wei-bing. Study on settlement deformation laws and calculation method of high loess filled embankment[D]. Xi'an: Chang-an University, 2007. (in Chinese))
    [2]
    宋焱勋, 彭建兵, 张 骏. 黄土填方高边坡变形破坏机制分析[J]. 工程地质学报, 2008(5): 620-624. (SONG Yan-xun, PENG Jian-bing, ZHANG Jun. Deformation mechanism of high loess embankment slope[J]. Journal of Engineering Geology, 2008(5): 620-624. (in Chinese))
    [3]
    李喜忠. 斜坡高填方黄土路基破坏机理与加固措施[J]. 北方交通, 2013(9): 28-31. (LI Xi-zhong, Study on failure mechanism and reinforcement technology of high earth fill loess sub-grade on the slope[J]. North Transportation, 2013(9): 28-31. (in Chinese))
    [4]
    胡小明, 余学明. 高填方黄土路堤的最优填筑密度分区研究[J]. 四川大学学报(工程科学版), 2002, 34(1): 40-43. (HU Xiao-ming, YU Xue-ming. Research on distributing zones of optimum filling density in high loess embankment[J]. Journal of Sichuan University (Engineering Science), 2002, 34(1): 40-43. (in Chinese))
    [5]
    张丽萍. 黄土高路堤稳定性研究[D]. 西安: 长安大学, 2005. (ZHANG Li-ping. Study on stability of high loess filled embankment[D]. Xi'an: Chang-an University, 20075. (in Chinese))
    [6]
    胡长明, 梅 源, 王雪艳. 吕梁地区压实马兰黄土变形与抗剪强度特性[J]. 工程力学, 2013, 10: 108-114. (HU Chang-ming, MEI Yuan, WANG Xue-yan. Deformation and shear strength characteristic of compacted Malan loess in Lv-liang region[J]. Engineering Mechanics, 2013, 10: 108-114. (in Chinese))
    [7]
    谢 妮, 邹维列, 严秋荣, 等. 黄土路基边坡降雨响应的试验研究[J]. 四川大学学报(工程科学版), 2009(4): 31-36. (XIE Ni, ZOU Wei-lie, YAN Qiu-rong, et al. Experimental research on respond of a loess subgrade slope to artificial rainfall[J]. Journal of Sichuan University (Engineering Science), 2009(4): 31-36. (in Chinese))
    [8]
    赵彦旭. 压实黄土增湿变形的非饱和土力学研究[D]. 兰州:兰州大学, 2010. (ZHAO Yan-xu. Unsaturated soil mechanics characteristics of compacted loess moistening deformation[D]. Lanzhou: Lanzhou University, 2010. (in Chinese))
    [9]
    唐朝生, 刘义怀, 施 斌, 等. 新老路基拼接中差异沉降的数值模拟[J]. 中国公路学报, 2007(2): 13-17. (TANG Chao-sheng, LIU Yi-huai, SHI Bin, et al. Numerical simulation on differential settlement of jointing of new and old roadbed[J]. China Journal of Highway and Transport, 2007(2): 13-17. (in Chinese))
    [10]
    胡长明, 梅 源, 刘增荣, 等. 湿陷性黄土高贴坡变形模式和稳定性分析[J]. 岩石力学与工程学报, 2012(12): 2585-2592. (HU Chang-ming, MEI Yuan, LIU Zeng-rong, et al. Deformation mode and stability analysis of high sticking slope of collapsible loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012(12): 2585-2592. (in Chinese))
    [11]
    朱才辉, 李 宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013(2): 293-301. (ZHU Chai-hui, LI Ning, LIU Ming-zhen, et al. Spatiotemporal laws of post-construction settlement of loess-filled foundation of LÜ-Liang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013(2): 293-301. (in Chinese))
    [12]
    姚雪贵, 杨 彪, 雷愿锋, 等. 冲击压实法在湿陷性黄土高填方地基处理中的试验观测[J]. 工程建设, 2011(2): 38-39, 51. (YAO Xue-gui, YANG Biao, LEI Yuan-feng, et al. Testing and measuring of impact compaction method for collapsible loess high-fill foundation treatment[J]. Engineering Construction, 2011(2): 38-39, 51. (in Chinese))
    [13]
    张苏民, 郑建国. 湿陷性黄土(Q 3 )的增湿变形特征[J]. 岩土工程学报, 1990, 12(4): 21-31. (ZHANG Su-min, ZHENG Jian- guo. The deformation characteristics of collapsible loess during wetting process [J]. Chinese Journal of Geotechnical Engineering,1990, 12(4): 21-31. (in Chinese))
    [14]
    张苏民, 张 炜. 减湿和增湿时黄土的湿陷性[J]. 岩土工程学报, 1992(1): 57-61. (ZHANG Su-min, ZHANG Wei. The collapsibility of loess during demoistening and moistening process[J]. Chinese Journal of Geotechnical Engineering, 1992(1): 57-61. (in Chinese))
    [15]
    张茂花, 谢永利, 刘保健. 增(减)湿时黄土的湿陷系数曲线特征[J]. 岩土力学, 2005(9): 1363-1368. (ZHANG Mao-hua, XIE Yong-li, LIU Bao-jian. Characteristics of collapsibility coefficient curves of loess during moistening and demoistening process[J]. Rock and Soil Mechanics, 2005(9): 1363-1368. (in Chinese))
    [16]
    陈存礼, 蒋 雪, 杨 炯, 等. 结构性对压实黄土侧限压缩特性的影响[J]. 岩石力学与工程学报, 2014(9): 1939-1944. (Influence of soil structure on confined compression behavior of compacted loss[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(9): 1939-1944. (in Chinese))
    [17]
    伍石生, 武建民, 戴经梁. 压实黄土湿陷变形问题的研究[J]. 西安公路交通大学学报, 1997(3): 1-3. (WU Shi-sheng, WU Jian-min, DAI Jing-liang. Study on wetting collapse compacted loess[J]. Journal of Xi'an Highway University, 1997(3): 1-3. (in Chinese))
    [18]
    张贵发, 邱慧玲. 龄期对压实黄土湿陷性影响的试验[J]. 水资源与水工程学报, 1990(4): 66-68. (ZHANG Gui-fa, QIU Hui-ling. The tests on influence of collapsibility of compacted loess age[J]. Journal of Water Resources and Water Engineering, 1990(4): 66-68. (in Chinese))
    [19]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987(12): 1309-1318. (LEI Xiang-yi. The porosity type and collapsibility of Chinese loess[J]. Science in China (Ser. B), 1987(12): 1309-1318. (in Chinese))
    [20]
    高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990(4): 1-10. (GAO Guo-rui. A structure theory for collapsing deformation of loess soils[J]. Chinese Journal of Geotechnical Engineering, 1990(4): 1-10. (in Chinese))
    [21]
    方祥位, 申春妮, 李春海, 等. 陕西蒲城Q 2 黄土湿陷变形特性研究[J]. 岩土力学, 2013(增刊2): 115-120. (FANG Xiang-wei, SHEN Chun-ni, LI Chun-hai, et al. Collapsible deformation properties of Q 2 loess in Pucheng of Shaanxi province[J]. Rock and Soil Mechanics, 2013(S2): 115-120. (in Chinese))
    [22]
    谢定义. 试论中国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001(1): 3-13. (XIE Ding-yi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001(1): 3-13. (in Chinese))
  • Related Articles

    [1]WANG Wei, CHEN Chaowei, LIU Shifan, CAO Yajun, DUAN Xuelei, NIE Wenjun. Experimental study on permeability and effective porosity of anisotropic layered phyllite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 445-451. DOI: 10.11779/CJGE20230184
    [2]Study of the tunnel face failure mechanism and soil arching effect in auxiliary air balanced shield using the three-dimensional Material Point Method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240222
    [3]CAO Xue-shan, YUAN Jun-ping, DING Guo-quan. Numerical simulation of air resistance of French drains beneath geomembrane in field vacuuming tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1780-1788. DOI: 10.11779/CJGE202210003
    [4]ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046
    [5]LI Wang-lin, LIU Zhan-lei, MENG Xiang-tao, XU Fang. Experimental study on air expansion deformation of geomembrane under ring-restrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1147-1151. DOI: 10.11779/CJGE201606023
    [6]YU Hai-hao, WEI Chang-fu, YAN Rong-tao, FU Xin-hui, MA Tian-tian. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. DOI: 10.11779/CJGE201503023
    [7]ZHOU Shu-wei, XIA Cai-chu, ZHANG Ping-yang, ZHOU Yu. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008
    [8]CHU Xihua. Evolution of porosity and pore water pressure of granular materials based on continuum model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1255-1257.
    [9]SHEN Zhujiang. Exploitation of practical use of unsaturated soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 256-259.
    [10]Shen Zhujiang. Earth pressure of clay based on effective consolidation stress theory[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 353-356.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return