• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Yan, WANG Jia-ding, PENG Shu-jun, LI Bin. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 518-528. DOI: 10.11779/CJGE201603016
Citation: MA Yan, WANG Jia-ding, PENG Shu-jun, LI Bin. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 518-528. DOI: 10.11779/CJGE201603016

Deformation and failure mechanism of high sticking loess slope

More Information
  • Received Date: January 28, 2015
  • Published Date: March 24, 2016
  • Loess high sticking slopes have become a popular construction solution for engineering land in loess ridge landform area. The failures of those slopes have encouraged the studies on deformation and failure mechanisms of such artificial slopes. In this research, a high sticking slope failure is used as a case study. Based on the in-situ investigation and geological engineering survey, the stratigraphic structure features and impact factors of slope stability are analyzed. According to the analysis results, the corresponding laboratory tests are conducted, such as compacted loess wetting compression tests, deeply buried Q2 loess collapsibility tests, and loess triaxial tests with CTC and RTC stress paths. The deformation and failure mechanisms of high loess sticking slopes are studied from the in-situ and laboratory test data. The results indicate that the fluctuation of bed stratum causes various fill thicknesses, which further induce differential settlements and cracking on the slope shoulder. Water infiltration into the crack will then trigger deformation and failure. The failure mode of high sticking slopes is summarized: the differential settlement induced by consolidation of compacted loess and collapse of Q2 loess under high pressure causes cracks of slope shoulder→water infiltration into cracks softens the compacted loess→the initial sliding surface forms in the middle of slope→the front part of loess fails under wetting CTC stress path→the back part of loess fails under wetting RTC stress path→the locking section loess failes under wetting CTC stress path→the whole slope fails. These results are helpful for understanding the formation and evolution of failure of high loess sticking slopes, and may provide technical support to the treatment of loess slope stability.
  • [1]
    张卫兵. 黄土高填方路堤沉降变形规律与计算方法的研究[D]. 西安: 长安大学, 2007. (ZHANG Wei-bing. Study on settlement deformation laws and calculation method of high loess filled embankment[D]. Xi'an: Chang-an University, 2007. (in Chinese))
    [2]
    宋焱勋, 彭建兵, 张 骏. 黄土填方高边坡变形破坏机制分析[J]. 工程地质学报, 2008(5): 620-624. (SONG Yan-xun, PENG Jian-bing, ZHANG Jun. Deformation mechanism of high loess embankment slope[J]. Journal of Engineering Geology, 2008(5): 620-624. (in Chinese))
    [3]
    李喜忠. 斜坡高填方黄土路基破坏机理与加固措施[J]. 北方交通, 2013(9): 28-31. (LI Xi-zhong, Study on failure mechanism and reinforcement technology of high earth fill loess sub-grade on the slope[J]. North Transportation, 2013(9): 28-31. (in Chinese))
    [4]
    胡小明, 余学明. 高填方黄土路堤的最优填筑密度分区研究[J]. 四川大学学报(工程科学版), 2002, 34(1): 40-43. (HU Xiao-ming, YU Xue-ming. Research on distributing zones of optimum filling density in high loess embankment[J]. Journal of Sichuan University (Engineering Science), 2002, 34(1): 40-43. (in Chinese))
    [5]
    张丽萍. 黄土高路堤稳定性研究[D]. 西安: 长安大学, 2005. (ZHANG Li-ping. Study on stability of high loess filled embankment[D]. Xi'an: Chang-an University, 20075. (in Chinese))
    [6]
    胡长明, 梅 源, 王雪艳. 吕梁地区压实马兰黄土变形与抗剪强度特性[J]. 工程力学, 2013, 10: 108-114. (HU Chang-ming, MEI Yuan, WANG Xue-yan. Deformation and shear strength characteristic of compacted Malan loess in Lv-liang region[J]. Engineering Mechanics, 2013, 10: 108-114. (in Chinese))
    [7]
    谢 妮, 邹维列, 严秋荣, 等. 黄土路基边坡降雨响应的试验研究[J]. 四川大学学报(工程科学版), 2009(4): 31-36. (XIE Ni, ZOU Wei-lie, YAN Qiu-rong, et al. Experimental research on respond of a loess subgrade slope to artificial rainfall[J]. Journal of Sichuan University (Engineering Science), 2009(4): 31-36. (in Chinese))
    [8]
    赵彦旭. 压实黄土增湿变形的非饱和土力学研究[D]. 兰州:兰州大学, 2010. (ZHAO Yan-xu. Unsaturated soil mechanics characteristics of compacted loess moistening deformation[D]. Lanzhou: Lanzhou University, 2010. (in Chinese))
    [9]
    唐朝生, 刘义怀, 施 斌, 等. 新老路基拼接中差异沉降的数值模拟[J]. 中国公路学报, 2007(2): 13-17. (TANG Chao-sheng, LIU Yi-huai, SHI Bin, et al. Numerical simulation on differential settlement of jointing of new and old roadbed[J]. China Journal of Highway and Transport, 2007(2): 13-17. (in Chinese))
    [10]
    胡长明, 梅 源, 刘增荣, 等. 湿陷性黄土高贴坡变形模式和稳定性分析[J]. 岩石力学与工程学报, 2012(12): 2585-2592. (HU Chang-ming, MEI Yuan, LIU Zeng-rong, et al. Deformation mode and stability analysis of high sticking slope of collapsible loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012(12): 2585-2592. (in Chinese))
    [11]
    朱才辉, 李 宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013(2): 293-301. (ZHU Chai-hui, LI Ning, LIU Ming-zhen, et al. Spatiotemporal laws of post-construction settlement of loess-filled foundation of LÜ-Liang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013(2): 293-301. (in Chinese))
    [12]
    姚雪贵, 杨 彪, 雷愿锋, 等. 冲击压实法在湿陷性黄土高填方地基处理中的试验观测[J]. 工程建设, 2011(2): 38-39, 51. (YAO Xue-gui, YANG Biao, LEI Yuan-feng, et al. Testing and measuring of impact compaction method for collapsible loess high-fill foundation treatment[J]. Engineering Construction, 2011(2): 38-39, 51. (in Chinese))
    [13]
    张苏民, 郑建国. 湿陷性黄土(Q 3 )的增湿变形特征[J]. 岩土工程学报, 1990, 12(4): 21-31. (ZHANG Su-min, ZHENG Jian- guo. The deformation characteristics of collapsible loess during wetting process [J]. Chinese Journal of Geotechnical Engineering,1990, 12(4): 21-31. (in Chinese))
    [14]
    张苏民, 张 炜. 减湿和增湿时黄土的湿陷性[J]. 岩土工程学报, 1992(1): 57-61. (ZHANG Su-min, ZHANG Wei. The collapsibility of loess during demoistening and moistening process[J]. Chinese Journal of Geotechnical Engineering, 1992(1): 57-61. (in Chinese))
    [15]
    张茂花, 谢永利, 刘保健. 增(减)湿时黄土的湿陷系数曲线特征[J]. 岩土力学, 2005(9): 1363-1368. (ZHANG Mao-hua, XIE Yong-li, LIU Bao-jian. Characteristics of collapsibility coefficient curves of loess during moistening and demoistening process[J]. Rock and Soil Mechanics, 2005(9): 1363-1368. (in Chinese))
    [16]
    陈存礼, 蒋 雪, 杨 炯, 等. 结构性对压实黄土侧限压缩特性的影响[J]. 岩石力学与工程学报, 2014(9): 1939-1944. (Influence of soil structure on confined compression behavior of compacted loss[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(9): 1939-1944. (in Chinese))
    [17]
    伍石生, 武建民, 戴经梁. 压实黄土湿陷变形问题的研究[J]. 西安公路交通大学学报, 1997(3): 1-3. (WU Shi-sheng, WU Jian-min, DAI Jing-liang. Study on wetting collapse compacted loess[J]. Journal of Xi'an Highway University, 1997(3): 1-3. (in Chinese))
    [18]
    张贵发, 邱慧玲. 龄期对压实黄土湿陷性影响的试验[J]. 水资源与水工程学报, 1990(4): 66-68. (ZHANG Gui-fa, QIU Hui-ling. The tests on influence of collapsibility of compacted loess age[J]. Journal of Water Resources and Water Engineering, 1990(4): 66-68. (in Chinese))
    [19]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987(12): 1309-1318. (LEI Xiang-yi. The porosity type and collapsibility of Chinese loess[J]. Science in China (Ser. B), 1987(12): 1309-1318. (in Chinese))
    [20]
    高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990(4): 1-10. (GAO Guo-rui. A structure theory for collapsing deformation of loess soils[J]. Chinese Journal of Geotechnical Engineering, 1990(4): 1-10. (in Chinese))
    [21]
    方祥位, 申春妮, 李春海, 等. 陕西蒲城Q 2 黄土湿陷变形特性研究[J]. 岩土力学, 2013(增刊2): 115-120. (FANG Xiang-wei, SHEN Chun-ni, LI Chun-hai, et al. Collapsible deformation properties of Q 2 loess in Pucheng of Shaanxi province[J]. Rock and Soil Mechanics, 2013(S2): 115-120. (in Chinese))
    [22]
    谢定义. 试论中国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001(1): 3-13. (XIE Ding-yi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001(1): 3-13. (in Chinese))
  • Related Articles

    [1]JIA Heyang, LI Xiaolong, CAO Dongdong, WANG Shanshan, GUI Yunxiang, ZHONG Yanhui, ZHANG Bei. Experimental study on influences of temperature on diffusion behaviors of self-expanding polymer slurry in fractures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 794-802. DOI: 10.11779/CJGE20221530
    [2]YE Fei, LI Sihan, XIA Tianhan, SU Enjie, HAN Xingbo, ZHANG Caifei. Compaction-fracture diffusion model for backfill grouting of shield tunnels in low permeability strata[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2014-2022. DOI: 10.11779/CJGE20220812
    [3]FENG Shi-jin, PENG Ming-qing, CHEN Zhang-long, CHEN Hong-xin. One-dimensional transport of transient diffusion-advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. DOI: 10.11779/CJGE202205002
    [4]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [5]LENG Wu-ming, AI Xi, XU Fang, ZHANG Qi-shu, YANG Qi, NIE Ru-song, LIU Xiao-hao. Diffusion laws of horizontal additional stress in a new prestressed subgrade[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1445-1454. DOI: 10.11779/CJGE201908008
    [6]ZHANG Cong, LIANG Jin-wei, YANG Jun-sheng, ZHANG Gui-jin, XIE Yi-peng, YE Xin-tian. Diffusion mechanism of pulsating seepage grouting slurry with power-law fluid considering interval distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2120-2128. DOI: 10.11779/CJGE201811019
    [7]ZHANG Qing-song, WANG Hong-bo, LIU Ren-tai, LI Shu-cai, ZHANG Le-wen, ZHU Guang-xuan, ZHANG Lian-zheng. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 918-924. DOI: 10.11779/CJGE201805017
    [8]ZHU Ming-ting, ZHANG Qing-song, LI Shu-cai, ZHANG Xiao, TAN Ying-hua, WANG Kai. Effects of properties of surrounding rock on change laws of grouting pressures and diffusion patterns[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1258-1266. DOI: 10.11779/CJGE201707012
    [9]LI Song-ying, LUO Ping-ping. Diffusion law of grouts in irregular faults based on fractal interpolation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 126-131. DOI: 10.11779/CJGE201401011
    [10]ZHANG Zhong-miao, ZOU Jian, HE Jing-yi, WANG Hua-qiang. Laboratory tests on compaction grouting and fracture grouting of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1818-1824.
  • Cited by

    Periodical cited type(12)

    1. 丁龙. 基于桩侧注浆的桥梁桩基加固研究. 建筑机械. 2024(04): 182-185 .
    2. 曹洋,刘杨,张超宇,杨俊杰,李国政. 基于离散元法的盾尾同步注浆扩散及参数优化研究. 岩土工程学报. 2024(10): 2119-2128 . 本站查看
    3. 柳昭星. 奥陶系灰岩顶部劈裂注浆裂隙起裂机制试验研究. 采矿与安全工程学报. 2023(01): 204-214 .
    4. 王伟,李召峰,许彬,王凯,林春金,都君琪,王衍升. 桩侧注浆提升既有桩基承载特性试验与数值模拟. 科学技术与工程. 2023(21): 9226-9232 .
    5. 庞浩然,高艳华,徐兴芃,熊楚明. 粉细砂地层注浆加固技术的研究进展. 地基处理. 2023(05): 421-433 .
    6. 吴民晖. 压密注浆法在机场杂填土地基施工中的运用. 工程技术研究. 2022(15): 82-84 .
    7. 龚昕,赵程,吴悦. 黏土中考虑中主应力和卸荷效应的压密注浆模型研究. 施工技术(中英文). 2022(20): 45-51 .
    8. 林泽耿,侯振坤,张树文,黎剑华,徐晓斌,李祥新,王晓伟. 桩侧注浆结石体定量表征物理模拟试验. 科学技术与工程. 2021(06): 2427-2432 .
    9. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    10. 董敏忠. 注浆纠偏隧道水平位移的数值模拟. 建筑科学与工程学报. 2021(06): 138-146 .
    11. 徐飞,陈阳. 基于分维数的三维单裂隙注浆体流动数值模拟研究. 黄金. 2019(09): 37-41 .
    12. 秦鹏飞. 劈裂注浆技术研究新进展述评. 地基处理. 2019(02): 17-22 .

    Other cited types(21)

Catalog

    Article views (403) PDF downloads (341) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return