Citation: | FU Zhongzhi, WANG Li'an, CHEN Jinyi, ZHANG Yijiang. Constitutive model for interface between concrete slab and rockfill and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2305-2313. DOI: 10.11779/CJGE20230758 |
[1] |
International Commission on Large Dams. Concrete Face Rockfill Dams, Concepts for Design and Construction[M]. Beijing: China Water Power Press, 2010.
|
[2] |
SOBRINHO J A, XAVIER L V, ALBERTONI S C, et al. Performance and concrete face repair at Campos Novos[J]. Hydropower and Dams, 2007, 14(2): 39-42.
|
[3] |
YANG Z Y, ZHOU J P, WANG F Q. Technical Progress of High Concrete Face Rockfill Dam. [C]// Proceedings of 2nd International Symposium on Rockfill Dams. Brazil: Rio de Janeiro, 2011.
|
[4] |
贾金生, 郦能惠, 徐泽平, 等. 高混凝土面板坝安全关键技术研究[M]. 北京: 中国水利水电出版社, 2014.
JIA Jinsheng, LI Nenghui, XU Zeping, et al. Study on Key Technology for the Safety of High CFRDs[M]. Beijing: China Water & Power Press, 2014. (in Chinese
|
[5] |
徐泽平. 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报, 2019, 50(1): 62-74.
XU Zeping. Research progresses and key technologies of CFRD construction[J]. Journal of Hydraulic Engineering, 2019, 50(1): 62-74. (in Chinese)
|
[6] |
程展林, 姜景山, 丁红顺, 等. 粗粒土非线性剪胀模型研究[J]. 岩土工程学报, 2010, 32(3): 460-467. http://cge.nhri.cn/article/id/12415
CHENG Zhanlin, JIANG Jingshan, DING Hongshun, et al. Nonlinear dilatancy model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 460-467. (in Chinese) http://cge.nhri.cn/article/id/12415
|
[7] |
沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.
SHEN Zhujiang. Theoretical Soil Mechaics[M]. Beijing: China Water Power Press, 2000. (in Chinese)
|
[8] |
XIAO Y, LIU H L, YANG G, et al. A constitutive model for the state-dependent behaviors of rockfill material considering particle breakage[J]. Science China Technological Sciences, 2014, 57(8): 1636-1646. doi: 10.1007/s11431-014-5601-6
|
[9] |
FU Z Z, CHEN S S, LIU S H. Hypoplastic constitutive modelling of the wetting induced creep of rockfill materials[J]. Science China Technological Sciences, 2012, 55(7): 2066-2082. doi: 10.1007/s11431-012-4835-4
|
[10] |
GOODMAN R E, TAYLOR R L, BREKKE T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(3): 637-659. doi: 10.1061/JSFEAQ.0001133
|
[11] |
WAYNE C G, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673. doi: 10.1061/JSFEAQ.0001713
|
[12] |
顾淦臣, 束一鸣, 沈长松. 土石坝工程经验与创新[M]. 北京: 中国电力出版社, 2004.
GU Ganchen, SHU Yiming, SHEN Changsong. Experience and Innovation of Earth and Rock Dam Engineering[M]. Beijing: China Electric Power Press, 2004. (in Chinese)
|
[13] |
刘京茂. 堆石料和接触面弹塑性本构模型及其在面板堆石坝中的应用研究[D]. 大连: 大连理工大学, 2015.
LIU Jingmao. Elasto-plastic Constitutive Models of Rockfill Material and Soil-structure Interface and Their Applications on Concrete-faced Rockfiil Dam[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
|
[14] |
ZHANG G, ZHANG J M. Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil[J]. Soils and Foundations, 2008, 48(2): 231-245. doi: 10.3208/sandf.48.231
|
[15] |
HU L M, PU J L. Testing and modeling of soil-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 851-860. doi: 10.1061/(ASCE)1090-0241(2004)130:8(851)
|
[16] |
GÓMEZ J E, FLIZ G M, EBELING R M. Extended hyperbolic model for sand-to-concrete interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 993-1000. doi: 10.1061/(ASCE)1090-0241(2003)129:11(993)
|
[17] |
DE GENNARO V, FRANK R. Elasto-plastic analysis of the interface behaviour between granular media and structure[J]. Computers and Geotechnics, 2002, 29(7): 547-572. doi: 10.1016/S0266-352X(02)00010-1
|
[18] |
GHIONNA V N, MORTARA G. An elastoplastic model for sand-structure interface behaviour[J]. Geotechnique, 2002, 52(1): 41-50. doi: 10.1680/geot.2002.52.1.41
|
[19] |
EVGIN E, FAKHARIAN K. Effect of stress paths on the behaviour of sand-steel interfaces[J]. Canadian Geotechnical Journal, 1996, 33(6): 853-865. doi: 10.1139/t96-116-336
|
[20] |
XU B, ZOU D G, LIU H B. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43: 143-154. doi: 10.1016/j.compgeo.2012.03.002
|
[21] |
IRGENS F. Continuum Mechanics[M]. Berlin: Springer, 2008.
|
[22] |
杨启贵. 水布垭面板堆石坝筑坝技术[M]. 北京: 中国水利水电出版社, 2010.
YANG Qigui. Dam Construction Technology of Shuibuya Concrete Faced Rockfill Dam[M]. Beijing: China Water Power Press, 2010. (in Chinese)
|
[23] |
FU Z Z, CHEN S S, WEI K M. A generalized plasticity model for the stress-strain and creep behavior of rockfill materials[J]. Science China Technological Sciences, 2019, 62(4): 649-664. doi: 10.1007/s11431-018-9362-3
|
[24] |
丁林, 段国学, 徐昆振. 水布垭面板堆石坝面板变形及应力应变监测成果分析[J]. 水电与抽水蓄能, 2019, 5(6): 50-57, 86.
DING Lin, DUAN Guoxue, XU Kunzhen. Analysis on monitoring results of deformation, stress and strain of the face slab of Shuibuya CFRD[J]. Hydropower and Pumped Storage, 2019, 5(6): 50-57, 86. (in Chinese)
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |