• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FU Zhongzhi, WANG Li'an, CHEN Jinyi, ZHANG Yijiang. Constitutive model for interface between concrete slab and rockfill and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2305-2313. DOI: 10.11779/CJGE20230758
Citation: FU Zhongzhi, WANG Li'an, CHEN Jinyi, ZHANG Yijiang. Constitutive model for interface between concrete slab and rockfill and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2305-2313. DOI: 10.11779/CJGE20230758

Constitutive model for interface between concrete slab and rockfill and its application

More Information
  • Received Date: August 08, 2023
  • Available Online: January 11, 2024
  • Concrete slabs play a crucial role in the seepage controlling system of concrete-faced dams. The stress and deformation behavior of concrete slabs mainly depends on the stress-strain properties of their supporting rockfill materials and the contact behavior of the interfaces between slabs and damming rockfill materials. The interface models are commonly used, in stress and deformation analyses of concrete-faced dams, to reflect the load-transferring mechanism between the concrete slabs and the rockfill materials. Therefore, the reliability of the calculated results depends on the rationality of the interface model used. In this study, the deficiency of the traditional hyperbolic interface model is shown, and a new interface model is proposed. The new model can consider the coupling effects between two shearing directions, and the requirements of shear strength criterion and frame-independence are satisfied. The model uses only a few parameters and is easy to implement in finite element analyses. It is shown by a case study that the compressive failure zones occur in real projects can be simulated by the proposed model, at least in a qualitative manner.
  • [1]
    International Commission on Large Dams. Concrete Face Rockfill Dams, Concepts for Design and Construction[M]. Beijing: China Water Power Press, 2010.
    [2]
    SOBRINHO J A, XAVIER L V, ALBERTONI S C, et al. Performance and concrete face repair at Campos Novos[J]. Hydropower and Dams, 2007, 14(2): 39-42.
    [3]
    YANG Z Y, ZHOU J P, WANG F Q. Technical Progress of High Concrete Face Rockfill Dam. [C]// Proceedings of 2nd International Symposium on Rockfill Dams. Brazil: Rio de Janeiro, 2011.
    [4]
    贾金生, 郦能惠, 徐泽平, 等. 高混凝土面板坝安全关键技术研究[M]. 北京: 中国水利水电出版社, 2014.

    JIA Jinsheng, LI Nenghui, XU Zeping, et al. Study on Key Technology for the Safety of High CFRDs[M]. Beijing: China Water & Power Press, 2014. (in Chinese
    [5]
    徐泽平. 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报, 2019, 50(1): 62-74.

    XU Zeping. Research progresses and key technologies of CFRD construction[J]. Journal of Hydraulic Engineering, 2019, 50(1): 62-74. (in Chinese)
    [6]
    程展林, 姜景山, 丁红顺, 等. 粗粒土非线性剪胀模型研究[J]. 岩土工程学报, 2010, 32(3): 460-467. http://cge.nhri.cn/article/id/12415

    CHENG Zhanlin, JIANG Jingshan, DING Hongshun, et al. Nonlinear dilatancy model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 460-467. (in Chinese) http://cge.nhri.cn/article/id/12415
    [7]
    沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.

    SHEN Zhujiang. Theoretical Soil Mechaics[M]. Beijing: China Water Power Press, 2000. (in Chinese)
    [8]
    XIAO Y, LIU H L, YANG G, et al. A constitutive model for the state-dependent behaviors of rockfill material considering particle breakage[J]. Science China Technological Sciences, 2014, 57(8): 1636-1646. doi: 10.1007/s11431-014-5601-6
    [9]
    FU Z Z, CHEN S S, LIU S H. Hypoplastic constitutive modelling of the wetting induced creep of rockfill materials[J]. Science China Technological Sciences, 2012, 55(7): 2066-2082. doi: 10.1007/s11431-012-4835-4
    [10]
    GOODMAN R E, TAYLOR R L, BREKKE T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(3): 637-659. doi: 10.1061/JSFEAQ.0001133
    [11]
    WAYNE C G, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673. doi: 10.1061/JSFEAQ.0001713
    [12]
    顾淦臣, 束一鸣, 沈长松. 土石坝工程经验与创新[M]. 北京: 中国电力出版社, 2004.

    GU Ganchen, SHU Yiming, SHEN Changsong. Experience and Innovation of Earth and Rock Dam Engineering[M]. Beijing: China Electric Power Press, 2004. (in Chinese)
    [13]
    刘京茂. 堆石料和接触面弹塑性本构模型及其在面板堆石坝中的应用研究[D]. 大连: 大连理工大学, 2015.

    LIU Jingmao. Elasto-plastic Constitutive Models of Rockfill Material and Soil-structure Interface and Their Applications on Concrete-faced Rockfiil Dam[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
    [14]
    ZHANG G, ZHANG J M. Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil[J]. Soils and Foundations, 2008, 48(2): 231-245. doi: 10.3208/sandf.48.231
    [15]
    HU L M, PU J L. Testing and modeling of soil-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 851-860. doi: 10.1061/(ASCE)1090-0241(2004)130:8(851)
    [16]
    GÓMEZ J E, FLIZ G M, EBELING R M. Extended hyperbolic model for sand-to-concrete interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 993-1000. doi: 10.1061/(ASCE)1090-0241(2003)129:11(993)
    [17]
    DE GENNARO V, FRANK R. Elasto-plastic analysis of the interface behaviour between granular media and structure[J]. Computers and Geotechnics, 2002, 29(7): 547-572. doi: 10.1016/S0266-352X(02)00010-1
    [18]
    GHIONNA V N, MORTARA G. An elastoplastic model for sand-structure interface behaviour[J]. Geotechnique, 2002, 52(1): 41-50. doi: 10.1680/geot.2002.52.1.41
    [19]
    EVGIN E, FAKHARIAN K. Effect of stress paths on the behaviour of sand-steel interfaces[J]. Canadian Geotechnical Journal, 1996, 33(6): 853-865. doi: 10.1139/t96-116-336
    [20]
    XU B, ZOU D G, LIU H B. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43: 143-154. doi: 10.1016/j.compgeo.2012.03.002
    [21]
    IRGENS F. Continuum Mechanics[M]. Berlin: Springer, 2008.
    [22]
    杨启贵. 水布垭面板堆石坝筑坝技术[M]. 北京: 中国水利水电出版社, 2010.

    YANG Qigui. Dam Construction Technology of Shuibuya Concrete Faced Rockfill Dam[M]. Beijing: China Water Power Press, 2010. (in Chinese)
    [23]
    FU Z Z, CHEN S S, WEI K M. A generalized plasticity model for the stress-strain and creep behavior of rockfill materials[J]. Science China Technological Sciences, 2019, 62(4): 649-664. doi: 10.1007/s11431-018-9362-3
    [24]
    丁林, 段国学, 徐昆振. 水布垭面板堆石坝面板变形及应力应变监测成果分析[J]. 水电与抽水蓄能, 2019, 5(6): 50-57, 86.

    DING Lin, DUAN Guoxue, XU Kunzhen. Analysis on monitoring results of deformation, stress and strain of the face slab of Shuibuya CFRD[J]. Hydropower and Pumped Storage, 2019, 5(6): 50-57, 86. (in Chinese)
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return