• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Bin, NING Yong, FENG Tao, ZNEG Ze-min, GUO Ze-yang. Meso-mechanism of rock failure influenced by bolt anchorage under uniaxial compression loading[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1593-1600. DOI: 10.11779/CJGE201809004
Citation: WANG Bin, NING Yong, FENG Tao, ZNEG Ze-min, GUO Ze-yang. Meso-mechanism of rock failure influenced by bolt anchorage under uniaxial compression loading[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1593-1600. DOI: 10.11779/CJGE201809004

Meso-mechanism of rock failure influenced by bolt anchorage under uniaxial compression loading

More Information
  • Received Date: June 21, 2017
  • Published Date: September 24, 2018
  • As an important support method, the bolt anchoring system is widely used to control the dynamic disasters of deep brittle surrounding rock, but deep rock engineering practices have been beset by the failure of brittle rock with bolt support because the researches on anchorage theories still lag behind. Based on the failure characteristics of brittle surrounding rock with bolt support in practical engineering, such as shallow surface damage and local damage, uniaxial compression fractures of intact brittle specimens influenced by bolts with different diameters are studied by means of laboratory similarity model tests. The test results show that the relationship between bolt diameters and the promotion of the elastic modulus and strength of brittle rock should be matched optimally, and only increasing the bolt diameter can not control ideally the brittle surrounding rock. Also, bolt anchorage can change the uniaxial compression failure mode of brittle specimens, macroscopically, the splitting failure can be transformed into shear one, and the extent of shear failure is determined by the bolt diameters as well. From the angle of meso-scale mechanism, the crack propagation model with two main internal cracks is established to analyze the fracture change of anchored specimens, and its main factor can be attributed to the inhibition effect on the propagation of internal cracks influenced by the bolt anchorage which decreases the length ratio η of the wing crack to the main crack. According to the calculated results of most-easily-cracking angle ζ, the long wing crack wing extends towards the loading direction which mainly induces its splitting failure, conversely, the short wing crack deviates from the loading direction which mainly causes its shear failure. The fracture mechanism of anchored brittle specimens can be revealed preferably in the view of meso-scale.
  • [1]
    李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题[J]. 中国有色金属学报, 2011, 21(10): 2551-2563.
    (LI Xi-bing, YAO Jin-rui, GONG Feng-qiang.Dynamic problems in deep exploitation of hard rock metal mines[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2551-2563. (in Chinese))
    [2]
    王梦恕, 谭忠盛. 中国隧道及地下工程修建技术[J].中国工程科学, 2010, 12(12): 4-10.
    (WANG Meng-shu, TAN Zhong-sheng.The construct technology of tunnel and underground engineering in China[J]. Engineering Sciences, 2010, 12(12): 4-10. (in Chinese))
    [3]
    张镜剑, 傅冰骏. 岩爆及其判据和防治[J].岩石力学与工程学报,2008, 27(10): 2034-2042.
    (ZHANG Jing-jian, FU Bing-jun.Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034-2042. (in Chinese))
    [4]
    ORTLEPP W D.The behaviour of tunnels at great depth under large static and dynamic pressures[J]. Tunnelling and Underground Space Technology, 2001, 16(1): 41-48.
    [5]
    KAISER P K, MCCREATH D R, TANNANT D D.Canadian rockburst support handbook[R]. Sudbury: Geomechanics Research Centre, Laurentian University, 1996.
    [6]
    王斌, 李夕兵, 马春德, 等. 岩爆灾害控制的动静组合支护原理及初步应用[J]. 岩石力学与工程学报, 2014, 33(6): 1169-1179.
    (WANG Bin, LI Xi-bing, MA Chun-de, et al.Static-dynamical combination support mechanism and preliminary application of rockburst disaster controlling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1169-1179. (in Chinese))
    [7]
    钱鸣高, 石平五. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.
    (QIAN Ming-gao, SHI Ping-wu.Mining pressure and strata control[M]. Xuzhou: China University of Mining and Technology Press, 2010. (in Chinese))
    [8]
    冯夏庭, 张传庆, 陈炳瑞, 等. 岩爆孕育过程的动态调控[J]. 岩石力学与工程学报, 2012, 31(10): 1983-1998.
    (FENG Xia-ting, ZHANG Chuan-qing, CHEN Bing-rui, et al.Dynamical control of rockburst evolution process[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1983-1998. (in Chinese))
    [9]
    周辉, 徐荣超, 张传庆, 等. 预应力锚杆锚固止裂效应的试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 2027-2037.
    (ZHOU Hui, XU Rong-chao, ZHANG Chuan-qing, et al.Experimental study of crack prevention effect of pre-stressed bolt anchoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2027-2037. (in Chinese))
    [10]
    潘岳, 王志强. 岩体动力失稳的功、能增量——突变理论研究方法[J]. 岩石力学与工程学报, 2004, 23(9): 1433-1438.
    (PAN Yue, WANG Zhi-qiang.Research approach on increment of work and energy: catastrophe theory of rock dynamic destabilization[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1433-1438. (in Chinese))
    [11]
    吴文平, 冯夏庭, 张传庆, 等. 深埋硬岩隧洞系统砂浆锚杆的加固机制与加固效果模拟方法[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2711-2721.
    (WU Wen-ping, FENG Xia-ting, ZHANG Chuan-qing, et al.Reinforcing mechanism and simulating method for reinfrocing effects of systemically grouted bolts in deep-buried hard rock tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2711-2721. (in Chinese))
    [12]
    唐礼忠, 汪令辉, 张君, 等. 大规模开采矿山地震视应力和变形与区域性危险地震预测[J]. 岩石力学与工程学报, 2011, 30(6): 1168-1178.
    (TANG Li-zhong, WANG Ling-hui, ZHANG Jun, et al.Seismic apparent stress and deformation in a deep mine under large-scale mining and areal hazardous seismic prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1168-1178. (in Chinese))
    [13]
    陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制:时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569.
    (CHEN Bing-rui, FENG Xia-ting, MING Hua-jun, et al.Evolution law and mechanism of rockburst in deep tunnel: time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561-569. (in Chinese))
    [14]
    何满潮. 深部软岩工程的研究进展与挑战[J]. 煤炭学报, 2014, 39(8): 1409-1411.
    (HE Man-chao.Progress and challenges of soft rock engineering in depth[J]. Journal of China Coal Society, 2014, 39(8): 1409-1411. (in Chinese))
    [15]
    周辉, 孟凡震, 刘海涛, 等. 花岗岩脆性破坏特征与机制试验研究[J]. 岩石力学与工程学报, 2014, 32(9): 1822-1827.
    (ZHOU Hui, MENG Fan-zhen, LIUHai-tao, et al. Experimental study on characteristics and mechanism of brittle failure of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 32(9): 1822-1827. (in Chinese))
    [16]
    张宁, 李术才, 李明田, 等. 单轴压缩条件下锚杆对含三维表面裂隙试样的锚固效应试验研究[J]. 岩土力学, 2011, 32(11): 3288-3295.
    (ZHANG Ning,LI Shu-cai, LI Ming-tian, et al.Experimental study of reinforced effect of bolt in 3D surface fractured specimens under uniaxial compression[J]. Rock and Soil Mechanics, 2011, 32(11): 3288-3295. (in Chinese))
    [17]
    李连贵, 徐文胜, 许迎年, 等. 岩爆模拟材料研制及模拟试验分析[J]. 华中科技大学学报, 2001, 29(6): 80-82.
    (LI Lian-gui, XU Wen-sheng, XU Ying-nian, et al.Experimental study on simulation materials of rockburst[J]. Journal of Huazhong University of Science & Technology, 2001, 29(6): 80-82. (in Chinese))
    [18]
    李银平, 伍佑伦, 杨春和. 岩石类材料滑动裂纹模型[J]. 岩石力学与工程学报, 2007, 26(2): 278-284.
    (LI Yin-ping, WU You-lun, YNAG Chun-he.Comparison of sliding crack models for rock-like materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 278-284. (in Chinese))
    [19]
    王斌, 李夕兵. 单轴荷载下饱水岩石静态和动态抗压强度的细观力学分析[J]. 爆炸与冲击, 2012, 32(4): 423-431.
    (WANG Bin, LI Xi-bing.Mesomechanics analysis of static compressive strength and dynamic compressive strength of water-saturated rock under uniaxial load[J].Explosion and Shock Waves, 2012, 32(4): 423-431. (in Chinese))
    [20]
    王海龙, 李庆斌. 围压下裂纹中自由水影响混凝土力学性能的机理[J]. 清华大学学报(自然科学版), 2007, 47(9): 1443-1446.
    (WANG Hai-long, LI Qing-bin.Meso- mechanism of effects of free water on mechanical properties of concrete under confined compression[J]. Journal of Tsinghua University (Science &Technology), 2007, 47(9): 1443-1446. (in Chinese))
    [21]
    HORRI H, NEMAT-NASSER S.Brittle failure in compression: splitting, faulting and brittle-ductile transition[J]. Philosophical Transactions of the Royal Society of London, 1986, 319(1549): 337-374.
    [22]
    STEIF P S.Crack extension under compressive loading[J]. Engineering Fracture Mechanics, 1984, 20(3): 463-473.
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]SHAO Long-tan, WEN Tian-de, GUO Xiao-xia. Direct measurement method and prediction formula for permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 806-812. DOI: 10.11779/CJGE201905002
    [3]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [4]CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
    [5]WU Meng-xi, CHENG Peng-da, FAN Fu-ping, LI Xiao-bin. Test apparatus and method for field measurement of surface permeability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 184-189. DOI: 10.11779/CJGE2016S2030
    [6]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [7]LI Zong-li, PEI Xiang-hui, LÜ Cong-cong, ZHANG Guo-hui. Reasonable permeability coefficient and engineering measures of concrete lining circle[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1167-1172. DOI: 10.11779/CJGE201406024
    [8]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [9]YE Weimin, QIAN Lixin, BAI Yun, CHEN Bao. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 27-30.
    [10]LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510.
  • Cited by

    Periodical cited type(1)

    1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看

    Other cited types(5)

Catalog

    Article views (304) PDF downloads (245) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return