• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Zong-li, PEI Xiang-hui, LÜ Cong-cong, ZHANG Guo-hui. Reasonable permeability coefficient and engineering measures of concrete lining circle[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1167-1172. DOI: 10.11779/CJGE201406024
Citation: LI Zong-li, PEI Xiang-hui, LÜ Cong-cong, ZHANG Guo-hui. Reasonable permeability coefficient and engineering measures of concrete lining circle[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1167-1172. DOI: 10.11779/CJGE201406024

Reasonable permeability coefficient and engineering measures of concrete lining circle

More Information
  • Received Date: September 15, 2013
  • Published Date: June 19, 2014
  • The analytical results of seepage fields and the elasto-plastic solutions considering seepage force are adopted to study the feasibility of permeable concrete lining and its reasonable permeability coefficient. The influence laws of seepage field, flow discharge, plastic zone, displacement and rock pressure are analyzed under different permeability coefficient ratios of lining to surrounding rock of free flow pressure tunnel running in a practical project. The results show that the pore water pressure, plastic zone, displacement at the edge of the plastic zone and rock pressure are the maximum when the lining circle is impermeable concrete material. But those values rapidly decrease when the permeability of lining slightly increases, and tend to be constant values with the increase of permeability coefficient ratios of lining circle to surrounding rock. The method of permeable concrete lining in free flow pressure tunnel is feasible, and the reasonable permeability coefficient ratio of lining and surrounding rock is equal to or larger than 1.0. The permeable concrete lining circle structure is proposed for solving the problems of limited flow discharge required by the surrounding water environment and durability of reinforced concrete lining. The design measures are also discussed.
  • [1]
    SL 279—2002 水工隧洞设计规范[S]. 北京:中国水利水电出版社, 2003: 20-37. (SL 279—2002 Specification for design of hydraulic tunnel[S]. Beijing: China Water Power Press, 2003: 20-37. (in Chinese))
    [2]
    李宗利, 任青文, 王亚红. 考虑渗流场影响深埋圆形隧洞的弹塑性解[J]. 岩石力学与工程学报, 2004, 23(8): 1291-1295. (LI Zong-li, REN Qing-wen, WANG Ya-hong. Elasto-plastic analytical solution of deep-buried circle tunnel considering fluid flow field[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1291-1295. (in Chinese))
    [3]
    张黎明, 李鹏, 孙林娜, 等. 考虑地下水渗流影响的衬砌隧洞弹塑性分析[J]. 长江科学院院报, 2008, 25(5): 84-87. (ZHANG Li-ming, LI Peng, SUN Lin-na, et al. Elastio-plastic analysis of lined tunnel in under-ground water permeation[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(5): 84-87. (in Chinese))
    [4]
    蔡晓鸿, 蔡勇平. 水工压力隧洞结构应力计算[M]. 北京: 中国水利水电出版社, 2004: 3-8. (CAI Xiao-hong, CAI Yong-ping. Structural stress calculation for hydraulic pressure tunnel[M]. Beijing: China Water Power Press, 2004: 3-8. (in Chinese))
    [5]
    王建秀, 杨立中, 何静. 深埋隧道衬砌水荷载计算的基本理论[J]. 岩石力学与工程学报, 2002, 21(9): 1339-1343. (WANG Jian-xiu, YANG Li-zhong, HE Jing. Introduction to the calculation of external water pressure of tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1339-1343. (in Chinese))
    [6]
    张有天. 水工隧洞及压力管道外水压力修正系数[J]. 水力发电, 1996(12): 30-34. (ZHANG You-tian. Correction factors of external water pressure in design of tunnel and penstock [J]. Water Power, 1996(12): 30-34. (in Chinese))
    [7]
    王建宇. 隧道围岩渗流和衬砌水压力荷载[J]. 铁道建筑技术, 2008(2): 1-6. (WANG Jian-yu. Problems on external water pressure on tunnel lining[J]. Railway Construction Technology, 2008(2): 1-6. (in Chinese))
    [8]
    SCHLEISS A J.透水压力隧洞的设计[J]. 邵鉴文, 译. 人民珠江, 1986(5): 39-46. (SCHLEISS A J. Design of permeable lining of pressure tunnel[J]. SHAO Jian-wen, tran. Peral River, 1986(5): 39-46. (in Chinese))
    [9]
    李新星, 蔡永昌, 庄晓莹, 等. 高压引水隧洞衬砌的透水设计研究[J]. 岩土力学, 2009, 30(5): 1403-1408. (LI Xin-xing, CAI Yong-chang, ZHUANG Xiao-ying, et al. Design of permeable lining for high pressure hydraulic tunnel[J]. Rock and Soil Mechanics, 2009, 30(5): 1403-1408. (in Chinese))
    [10]
    刘杰, 郑治. 走出水工隧洞结构设计的误区[J]. 贵州水力发电, 2010, 24(4): 1-4. (LIU Jie, ZHENG Zhi. Out of common mistakes of design for hydraulic tunnel structure[J]. Guizhong Water Power, 2010, 24(4): 1-4. (in Chinese))
    [11]
    郑波, 王建宇. 圆形隧道围岩与衬砌渗透力解析解[J].武汉理工大学学报(交通科学与工程版), 2011, 35(1): 19-23. (ZHENG Bo, WANG Jian-yu. Analytical solutions for seepage forces of circular tunnel surrounding ground and lining[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering ), 2011, 35(1): 19-23. (in Chinese))
    [12]
    王秀英, 王梦恕, 张弥. 山岭隧道堵水限排衬砌外水压力研究[J]. 岩土工程学报, 2005, 27(1): 125-127. (WANG Xiu-ying, WANG Meng-shu, ZHANG Mi. Research on regulating water pressure acting on mountain tunnels by blocking ground water and limiting discharge[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 125-127. (in Chinese))
    [13]
    张贤超, 尹健, 池漪. 透水混凝土性能研究综述[J]. 混凝土, 2010(12): 47-50. (ZHANG Xian-chao, YIN Jian, CHI Yi. Summary of performance for pervious concrete[J]. Concrete, 2010(12): 47-50. (in Chinese))
    [14]
    裴向辉, 李宗利, 杨明镜. 衬砌渗透性对深埋隧洞渗流场及塑性区的影响研究[J]. 中国农村水利水电, 2013(4): 75-79. (PEI Xiang-hui, LI Zong-li, YANG Ming-jing. A study of influence of lining permeability on deep tunnel fluid flow field and plastic zone[J]. China Rural Water and Hydropower, 2013(4): 75-79. (in Chinese))
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
    [3]ZHAI Qian, SHEN Tianlun, TIAN Gang, DAI Guoliang, ZHAO Xueliang, GONG Weiming, CAI Jianguo. Prediction of the coefficient of permeability for unsaturated soil by considering the film flow[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 291-298. DOI: 10.11779/CJGE20221322
    [4]TAN Zhi-xiang, WANG Zheng-zhong, GE Jian-rui, JIANG Hao-yuan, LIU Quan-hong, MENG Xiao-dong. Experimental study on soil-water characteristic curve and permeability curve of white sandstone and mudstone in northern Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 229-233. DOI: 10.11779/CJGE2020S1045
    [5]CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
    [6]WU Meng-xi, CHENG Peng-da, FAN Fu-ping, LI Xiao-bin. Test apparatus and method for field measurement of surface permeability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 184-189. DOI: 10.11779/CJGE2016S2030
    [7]YI Pan-pan, NIU Sheng-kuan, WEI Chang-fu, CHEN Pan. Dynamic multi-step outflow method for tests on hydraulic properties of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1797-1801. DOI: 10.11779/CJGE201610008
    [8]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [9]YE Weimin, QIAN Lixin, CHEN Bao, WANG Ju, CUI Yujun. Laboratory test on unsaturated hydraulic conductivity of densely compacted Gaomiaozi Bentonite under confined conditions[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 105-108.
    [10]LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510.
  • Cited by

    Periodical cited type(12)

    1. 丁龙. 基于桩侧注浆的桥梁桩基加固研究. 建筑机械. 2024(04): 182-185 .
    2. 曹洋,刘杨,张超宇,杨俊杰,李国政. 基于离散元法的盾尾同步注浆扩散及参数优化研究. 岩土工程学报. 2024(10): 2119-2128 . 本站查看
    3. 柳昭星. 奥陶系灰岩顶部劈裂注浆裂隙起裂机制试验研究. 采矿与安全工程学报. 2023(01): 204-214 .
    4. 王伟,李召峰,许彬,王凯,林春金,都君琪,王衍升. 桩侧注浆提升既有桩基承载特性试验与数值模拟. 科学技术与工程. 2023(21): 9226-9232 .
    5. 庞浩然,高艳华,徐兴芃,熊楚明. 粉细砂地层注浆加固技术的研究进展. 地基处理. 2023(05): 421-433 .
    6. 吴民晖. 压密注浆法在机场杂填土地基施工中的运用. 工程技术研究. 2022(15): 82-84 .
    7. 龚昕,赵程,吴悦. 黏土中考虑中主应力和卸荷效应的压密注浆模型研究. 施工技术(中英文). 2022(20): 45-51 .
    8. 林泽耿,侯振坤,张树文,黎剑华,徐晓斌,李祥新,王晓伟. 桩侧注浆结石体定量表征物理模拟试验. 科学技术与工程. 2021(06): 2427-2432 .
    9. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    10. 董敏忠. 注浆纠偏隧道水平位移的数值模拟. 建筑科学与工程学报. 2021(06): 138-146 .
    11. 徐飞,陈阳. 基于分维数的三维单裂隙注浆体流动数值模拟研究. 黄金. 2019(09): 37-41 .
    12. 秦鹏飞. 劈裂注浆技术研究新进展述评. 地基处理. 2019(02): 17-22 .

    Other cited types(21)

Catalog

    Article views (402) PDF downloads (307) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return