Citation: | LIANG Jingyu, QI Jilin, ZHANG Yuedong, LU Dechun, LI Haowen. Non-orthogonal elastoplastic model for frozen sand incorporating effects of temperature and confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1889-1898. DOI: 10.11779/CJGE20230455 |
[1] |
LAI Y M, XU X T, DONG Y H, et al. Present situation and prospect of mechanical research on frozen soils in China[J]. Cold Regions Science and Technology, 2013, 87: 6-18. doi: 10.1016/j.coldregions.2012.12.001
|
[2] |
马巍, 王大雁. 中国冻土力学研究50a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. http://cge.nhri.cn/cn/article/id/14543
MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese) http://cge.nhri.cn/cn/article/id/14543
|
[3] |
ZHAO Y H, ZHANG M Y, GAO J. Research progress of constitutive models of frozen soils: a review[J]. Cold Regions Science and Technology, 2023, 206: 103720. doi: 10.1016/j.coldregions.2022.103720
|
[4] |
XU X T, WANG Y B, BAI R Q, et al. Comparative studies on mechanical behavior of frozen natural saline silty sand and frozen desalted silty sand[J]. Cold Regions Science and Technology, 2016, 132: 81-88. doi: 10.1016/j.coldregions.2016.09.015
|
[5] |
KIM S Y, KIM Y, LEE J S. Effects of frozen water content and silt fraction on unconfined compressive behavior of fill materials[J]. Construction and Building Materials, 2021, 266: 120912. doi: 10.1016/j.conbuildmat.2020.120912
|
[6] |
NIU Y Q, WANG X, LIAO M K, et al. Strength criterion for frozen silty clay considering the effect of initial water content[J]. Cold Regions Science and Technology, 2022, 196: 103521. doi: 10.1016/j.coldregions.2022.103521
|
[7] |
孙晓宇, 齐吉琳, 尹振宇. 冻结饱和标准砂压缩性试验研究[J]. 岩土工程学报, 2018, 40(9): 1723-1728. doi: 10.11779/CJGE201809020
SUN Xiaoyu, QI Jilin, YIN Zhenyu. Experimental study on compressibility of frozen saturated ISO standard sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1723-1728. (in Chinese) doi: 10.11779/CJGE201809020
|
[8] |
高娟, 赖远明, 常丹, 等. 考虑加载速率影响的冻结含盐砂土强度准则研究[J]. 岩土工程学报, 2019, 41(1): 104-110. doi: 10.11779/CJGE201901011
GAO Juan, LAI Yuanming, CHANG Dan, et al. Strength criterion for frozen saline sand considering effects of loading rates[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 104-110. (in Chinese) doi: 10.11779/CJGE201901011
|
[9] |
LI X, YAN Y, JI S Y. Mechanical properties of frozen ballast aggregates with different ice contents and temperatures[J]. Construction and Building Materials, 2022, 317: 125893. doi: 10.1016/j.conbuildmat.2021.125893
|
[10] |
ZHANG D, LIU E L, LIU X Y, et al. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents[J]. Cold Regions Science and Technology, 2017, 143: 1-12. doi: 10.1016/j.coldregions.2017.08.006
|
[11] |
LUO F, LIU E L, ZHU Z Y. A strength criterion for frozen moraine soils[J]. Cold Regions Science and Technology, 2019, 164: 102786. doi: 10.1016/j.coldregions.2019.102786
|
[12] |
LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113. doi: 10.1016/j.ijplas.2015.10.008
|
[13] |
QI J L, HU W, MA W. Experimental study of a pseudo-preconsolidation pressure in frozen soils[J]. Cold Regions Science and Technology, 2010, 60(3): 230-233. doi: 10.1016/j.coldregions.2009.10.008
|
[14] |
CHANG D, LAI Y M, YU F. An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage[J]. Acta Geotechnica, 2019, 14(6): 1757-1783. doi: 10.1007/s11440-019-00775-0
|
[15] |
YAO X L, XU G F, ZHANG M Y, et al. A frozen soil rate dependent model with time related parabolic strength envelope[J]. Cold Regions Science and Technology, 2019, 159: 40-46. doi: 10.1016/j.coldregions.2018.12.006
|
[16] |
ZHANG D, LIU E L. Binary-medium-based constitutive model of frozen soils subjected to triaxial loading[J]. Results in Physics, 2019, 12: 1999-2008. doi: 10.1016/j.rinp.2019.02.029
|
[17] |
LAI Y M, JIN L, CHANG X X. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil[J]. International Journal of Plasticity, 2009, 25(6): 1177-1205. doi: 10.1016/j.ijplas.2008.06.010
|
[18] |
LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10): 1461-1484. doi: 10.1016/j.ijplas.2010.01.007
|
[19] |
SUN K, ZHOU A N. A multisurface elastoplastic model for frozen soil[J]. Acta Geotechnica, 2021, 16(11): 3401-3424. doi: 10.1007/s11440-021-01391-7
|
[20] |
YANG Y G, LAI Y M, DONG Y H, et al. The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures[J]. Cold Regions Science and Technology, 2010, 60(2): 154-160. doi: 10.1016/j.coldregions.2009.09.001
|
[21] |
LU D C, LIANG J Y, DU X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290. doi: 10.1016/j.compgeo.2018.10.004
|
[22] |
LU D C, ZHOU X, DU X L, et al. A 3D fractional elastoplastic constitutive model for concrete material[J]. International Journal of Solids and Structures, 2019, 165: 160-175. doi: 10.1016/j.ijsolstr.2019.02.004
|
[23] |
LI H C, TONG C X, CHANG X, et al. Constitutive modelling of temperature-dependent behaviour of soft rocks with fractional-order flow rule[J]. Applied Sciences, 2022, 12(8): 3875. doi: 10.3390/app12083875
|
[24] |
LIANG J Y, LU D C, DU X L, et al. Non-orthogonal elastoplastic constitutive model for sand with dilatancy[J]. Computers and Geotechnics, 2020, 118: 103329. doi: 10.1016/j.compgeo.2019.103329
|
[25] |
LIANG J Y, LU D C, ZHOU X, et al. Non-orthogonal elastoplastic constitutive model with the critical state for clay[J]. Computers and Geotechnics, 2019, 116: 103200. doi: 10.1016/j.compgeo.2019.103200
|
[26] |
QU P F, ZHU Q Z, ZHAO L Y, et al. A micromechanics-based fractional frictional damage model for quasi-brittle rocks[J]. Computers and Geotechnics, 2021, 139: 104391. doi: 10.1016/j.compgeo.2021.104391
|
[27] |
SUN K, TANG L, ZHOU A N, et al. An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces[J]. Computers and Geotechnics, 2020, 128: 103842. doi: 10.1016/j.compgeo.2020.103842
|
[28] |
姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. doi: 10.3321/j.issn:1000-4548.2005.01.003
YAO Yangping, LU Dechun, ZHOU Annan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.01.003
|
[29] |
姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. doi: 10.11779/CJGE201502001
YAO Yangping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese) doi: 10.11779/CJGE201502001
|
[30] |
YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
|
[31] |
高娟, 赖远明. 冻结盐渍土三轴剪切试验过程中的损伤及压融分析[J]. 岩土工程学报, 2018, 40(4): 707-715. doi: 10.11779/CJGE201804015
GAO Juan, LAI Yuanming. Damage and pressure melting analysis of frozen saline soilsinprocess of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. (in Chinese) doi: 10.11779/CJGE201804015
|
[32] |
孙星亮, 汪稔, 胡明鉴. 冻土三轴剪切过程中细观损伤演化CT动态试验[J]. 岩土力学, 2005, 26(8): 1298-1302, 1311. doi: 10.3969/j.issn.1000-7598.2005.08.022
SUN Xingliang, WANG Ren, HU Mingjian. A CT-timely experimental study on meso-scopic structural damage development of frozen soil under triaxial shearing[J]. Rock and Soil Mechanics, 2005, 26(8): 1298-1302, 1311. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.08.022
|
[33] |
赵淑萍, 马巍, 郑剑锋, 等. 基于CT单向压缩试验的冻结重塑兰州黄土损伤耗散势研究[J]. 岩土工程学报, 2012, 34(11): 2019-2025. http://cge.nhri.cn/cn/article/id/14883
ZHAO Shuping, MA Wei, ZHENG Jianfeng, et al. Damage dissipation potential of frozen remolded Lanzhou loess based on CT uniaxial compression test results[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2019-2025. (in Chinese) http://cge.nhri.cn/cn/article/id/14883
|
[1] | Temperature effect on thermal conductivity of bentonite with saline solution[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240203 |
[2] | XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243 |
[3] | PAN Bin, ZENG Zhao-tian, MO Hong-yan, LIU Zhao-qiang, CUI Zhe-qi. Temperature effects on shrinkage properties of swell-shrink soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 115-120. DOI: 10.11779/CJGE2022S1021 |
[4] | ZHANG Chao, CAO Wen-gui, ZHAO Heng, HE Min. Statistical damage simulation method for complete stress-strain path of rocks considering confining pressure effect and strength brittle drop[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 936-944. DOI: 10.11779/CJGE202205017 |
[5] | LI Xiu-lei, SHI Jian-yong, JIANG Zhao-qi, LI Yu-ping. Thermo-elastoplastic constitutive model for municipal solid waste (MSW) considering temperature effects and fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 523-532. DOI: 10.11779/CJGE202203014 |
[6] | DENG Yue-bao, WANG Tian-yuan, KONG Gang-qiang. Consolidation theory for saturated ground considering temperature effects[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1827-1835. DOI: 10.11779/CJGE201910006 |
[7] | YUAN Hai-ping, HAN Zhi-yong, LIN Hang, WANG Bin, CHEN Shui-mei. Rebound effect of rock & soil excavation based on M-C elastic-plastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 24-29. DOI: 10.11779/CJGE2014S2005 |
[8] | XU Xiao-li, GAO Feng, ZHANG Zhi-zhen. Influence of confining pressure on deformation and strength properties of granite after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2246-2252. DOI: 10.11779/CJGE201412012 |
[9] | ZHANG Zhi-chao, CHENG Xiao-hui. Thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. |
[10] | Ma Wei, Wu Ziwang, Sheng Yu. Effect of Confining Pressure on Strength Behaviour of Frozen Soil[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 7-11. |