• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Jingyu, QI Jilin, ZHANG Yuedong, LU Dechun, LI Haowen. Non-orthogonal elastoplastic model for frozen sand incorporating effects of temperature and confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1889-1898. DOI: 10.11779/CJGE20230455
Citation: LIANG Jingyu, QI Jilin, ZHANG Yuedong, LU Dechun, LI Haowen. Non-orthogonal elastoplastic model for frozen sand incorporating effects of temperature and confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1889-1898. DOI: 10.11779/CJGE20230455

Non-orthogonal elastoplastic model for frozen sand incorporating effects of temperature and confining pressure

More Information
  • Received Date: May 22, 2023
  • Available Online: March 24, 2024
  • The mechanical properties of frozen soils are significantly affected by temperature and confining pressure. To characterize the effects of temperature, a nonlinear relationship between the three-dimensional tensile strength and the temperature is established, which is incorporated into the yield function based on the coordinate transformation method. To characterize the effects of confining pressure, a potential strength degradation factor is established, which is used to develop the hardening parameters that effectively account for the effects of the confining pressure. Finally, based on the framework of the non-orthogonal elastoplastic model, a non-orthogonal elastoplastic constitutive model for frozen soils that can consider the effects of temperature and confining pressure is developed in the coordinate transformation space. Comparisons between the model predictions and the triaxial compression test results of the frozen silty sand demonstrate that the developed constitutive model can simulate the stress-strain relationship of frozen silty sand under different temperatures and confining pressures. The developed constitutive model characterizes the temperature effects, i.e., the increase in the peak shear strength with decreasing temperature, and the confining pressure effects, i.e., the transition from shear dilation and softening to shear contraction and hardening as reflected by the stress-strain curve under the increasing confining pressure.
  • [1]
    LAI Y M, XU X T, DONG Y H, et al. Present situation and prospect of mechanical research on frozen soils in China[J]. Cold Regions Science and Technology, 2013, 87: 6-18. doi: 10.1016/j.coldregions.2012.12.001
    [2]
    马巍, 王大雁. 中国冻土力学研究50a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. http://cge.nhri.cn/cn/article/id/14543

    MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese) http://cge.nhri.cn/cn/article/id/14543
    [3]
    ZHAO Y H, ZHANG M Y, GAO J. Research progress of constitutive models of frozen soils: a review[J]. Cold Regions Science and Technology, 2023, 206: 103720. doi: 10.1016/j.coldregions.2022.103720
    [4]
    XU X T, WANG Y B, BAI R Q, et al. Comparative studies on mechanical behavior of frozen natural saline silty sand and frozen desalted silty sand[J]. Cold Regions Science and Technology, 2016, 132: 81-88. doi: 10.1016/j.coldregions.2016.09.015
    [5]
    KIM S Y, KIM Y, LEE J S. Effects of frozen water content and silt fraction on unconfined compressive behavior of fill materials[J]. Construction and Building Materials, 2021, 266: 120912. doi: 10.1016/j.conbuildmat.2020.120912
    [6]
    NIU Y Q, WANG X, LIAO M K, et al. Strength criterion for frozen silty clay considering the effect of initial water content[J]. Cold Regions Science and Technology, 2022, 196: 103521. doi: 10.1016/j.coldregions.2022.103521
    [7]
    孙晓宇, 齐吉琳, 尹振宇. 冻结饱和标准砂压缩性试验研究[J]. 岩土工程学报, 2018, 40(9): 1723-1728. doi: 10.11779/CJGE201809020

    SUN Xiaoyu, QI Jilin, YIN Zhenyu. Experimental study on compressibility of frozen saturated ISO standard sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1723-1728. (in Chinese) doi: 10.11779/CJGE201809020
    [8]
    高娟, 赖远明, 常丹, 等. 考虑加载速率影响的冻结含盐砂土强度准则研究[J]. 岩土工程学报, 2019, 41(1): 104-110. doi: 10.11779/CJGE201901011

    GAO Juan, LAI Yuanming, CHANG Dan, et al. Strength criterion for frozen saline sand considering effects of loading rates[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 104-110. (in Chinese) doi: 10.11779/CJGE201901011
    [9]
    LI X, YAN Y, JI S Y. Mechanical properties of frozen ballast aggregates with different ice contents and temperatures[J]. Construction and Building Materials, 2022, 317: 125893. doi: 10.1016/j.conbuildmat.2021.125893
    [10]
    ZHANG D, LIU E L, LIU X Y, et al. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents[J]. Cold Regions Science and Technology, 2017, 143: 1-12. doi: 10.1016/j.coldregions.2017.08.006
    [11]
    LUO F, LIU E L, ZHU Z Y. A strength criterion for frozen moraine soils[J]. Cold Regions Science and Technology, 2019, 164: 102786. doi: 10.1016/j.coldregions.2019.102786
    [12]
    LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113. doi: 10.1016/j.ijplas.2015.10.008
    [13]
    QI J L, HU W, MA W. Experimental study of a pseudo-preconsolidation pressure in frozen soils[J]. Cold Regions Science and Technology, 2010, 60(3): 230-233. doi: 10.1016/j.coldregions.2009.10.008
    [14]
    CHANG D, LAI Y M, YU F. An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage[J]. Acta Geotechnica, 2019, 14(6): 1757-1783. doi: 10.1007/s11440-019-00775-0
    [15]
    YAO X L, XU G F, ZHANG M Y, et al. A frozen soil rate dependent model with time related parabolic strength envelope[J]. Cold Regions Science and Technology, 2019, 159: 40-46. doi: 10.1016/j.coldregions.2018.12.006
    [16]
    ZHANG D, LIU E L. Binary-medium-based constitutive model of frozen soils subjected to triaxial loading[J]. Results in Physics, 2019, 12: 1999-2008. doi: 10.1016/j.rinp.2019.02.029
    [17]
    LAI Y M, JIN L, CHANG X X. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil[J]. International Journal of Plasticity, 2009, 25(6): 1177-1205. doi: 10.1016/j.ijplas.2008.06.010
    [18]
    LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10): 1461-1484. doi: 10.1016/j.ijplas.2010.01.007
    [19]
    SUN K, ZHOU A N. A multisurface elastoplastic model for frozen soil[J]. Acta Geotechnica, 2021, 16(11): 3401-3424. doi: 10.1007/s11440-021-01391-7
    [20]
    YANG Y G, LAI Y M, DONG Y H, et al. The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures[J]. Cold Regions Science and Technology, 2010, 60(2): 154-160. doi: 10.1016/j.coldregions.2009.09.001
    [21]
    LU D C, LIANG J Y, DU X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290. doi: 10.1016/j.compgeo.2018.10.004
    [22]
    LU D C, ZHOU X, DU X L, et al. A 3D fractional elastoplastic constitutive model for concrete material[J]. International Journal of Solids and Structures, 2019, 165: 160-175. doi: 10.1016/j.ijsolstr.2019.02.004
    [23]
    LI H C, TONG C X, CHANG X, et al. Constitutive modelling of temperature-dependent behaviour of soft rocks with fractional-order flow rule[J]. Applied Sciences, 2022, 12(8): 3875. doi: 10.3390/app12083875
    [24]
    LIANG J Y, LU D C, DU X L, et al. Non-orthogonal elastoplastic constitutive model for sand with dilatancy[J]. Computers and Geotechnics, 2020, 118: 103329. doi: 10.1016/j.compgeo.2019.103329
    [25]
    LIANG J Y, LU D C, ZHOU X, et al. Non-orthogonal elastoplastic constitutive model with the critical state for clay[J]. Computers and Geotechnics, 2019, 116: 103200. doi: 10.1016/j.compgeo.2019.103200
    [26]
    QU P F, ZHU Q Z, ZHAO L Y, et al. A micromechanics-based fractional frictional damage model for quasi-brittle rocks[J]. Computers and Geotechnics, 2021, 139: 104391. doi: 10.1016/j.compgeo.2021.104391
    [27]
    SUN K, TANG L, ZHOU A N, et al. An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces[J]. Computers and Geotechnics, 2020, 128: 103842. doi: 10.1016/j.compgeo.2020.103842
    [28]
    姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. doi: 10.3321/j.issn:1000-4548.2005.01.003

    YAO Yangping, LU Dechun, ZHOU Annan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.01.003
    [29]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. doi: 10.11779/CJGE201502001

    YAO Yangping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese) doi: 10.11779/CJGE201502001
    [30]
    YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
    [31]
    高娟, 赖远明. 冻结盐渍土三轴剪切试验过程中的损伤及压融分析[J]. 岩土工程学报, 2018, 40(4): 707-715. doi: 10.11779/CJGE201804015

    GAO Juan, LAI Yuanming. Damage and pressure melting analysis of frozen saline soilsinprocess of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. (in Chinese) doi: 10.11779/CJGE201804015
    [32]
    孙星亮, 汪稔, 胡明鉴. 冻土三轴剪切过程中细观损伤演化CT动态试验[J]. 岩土力学, 2005, 26(8): 1298-1302, 1311. doi: 10.3969/j.issn.1000-7598.2005.08.022

    SUN Xingliang, WANG Ren, HU Mingjian. A CT-timely experimental study on meso-scopic structural damage development of frozen soil under triaxial shearing[J]. Rock and Soil Mechanics, 2005, 26(8): 1298-1302, 1311. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.08.022
    [33]
    赵淑萍, 马巍, 郑剑锋, 等. 基于CT单向压缩试验的冻结重塑兰州黄土损伤耗散势研究[J]. 岩土工程学报, 2012, 34(11): 2019-2025. http://cge.nhri.cn/cn/article/id/14883

    ZHAO Shuping, MA Wei, ZHENG Jianfeng, et al. Damage dissipation potential of frozen remolded Lanzhou loess based on CT uniaxial compression test results[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2019-2025. (in Chinese) http://cge.nhri.cn/cn/article/id/14883
  • Cited by

    Periodical cited type(9)

    1. 宋德坤,刘乐乐,王栋. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究. 地学前缘. 2024(06): 405-414 .
    2. 王丹,饶运章,刘戈,石亮,张美道. 离子型稀土镁盐浸矿不同深度矿土孔隙结构演化规律. 稀土. 2023(05): 92-102 .
    3. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 .
    4. 陈瑞敏,简文彬,张小芳,方泽化. CSFG-FR协同作用改良淤泥固化土性能试验研究. 岩土力学. 2022(04): 1020-1030 .
    5. 郭钟群,周可凡,金解放,周尖荣,尚白红. 流体理化特性对土体渗流规律影响研究进展. 有色金属科学与工程. 2022(04): 116-125 .
    6. 安鹏举,鲁莎,唐辉明,孙思璇,张子涵,缪明昊. 渗透作用下滑带细观结构演变特性. 地质科技通报. 2022(06): 169-179 .
    7. 张晓飞,陈新炜,严涛,张文伟,李守义. 基于裂缝冲刷试验的分散性土自愈性研究. 水资源与水工程学报. 2022(06): 167-173+181 .
    8. 陈仁祥,伏慧平,宋勇,王太伟,高柏. 稀土浸矿区山体滑坡特征及成因. 江西建材. 2021(01): 183-185 .
    9. 李文英,杨洋,曹成,许增光. 化学淤堵作用下尾矿砂孔隙分布及渗透特性试验研究. 水资源与水工程学报. 2021(03): 187-192 .

    Other cited types(22)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return