• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chao, CAO Wen-gui, ZHAO Heng, HE Min. Statistical damage simulation method for complete stress-strain path of rocks considering confining pressure effect and strength brittle drop[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 936-944. DOI: 10.11779/CJGE202205017
Citation: ZHANG Chao, CAO Wen-gui, ZHAO Heng, HE Min. Statistical damage simulation method for complete stress-strain path of rocks considering confining pressure effect and strength brittle drop[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 936-944. DOI: 10.11779/CJGE202205017

Statistical damage simulation method for complete stress-strain path of rocks considering confining pressure effect and strength brittle drop

More Information
  • Received Date: October 19, 2020
  • Available Online: September 22, 2022
  • To establish a statistical damage simulation method which can accurately describe the full stress-strain curve of rocks, aiming at the serious defects of the existing statistical damage constitutive models in simulating confining pressure effect and strength brittle drop, firstly, based on the basic deformation characteristics of brittle rocks under triaxial compression, the rocks are regarded as a series of two meso-materials: soft and hard materials, and the deformation analysis model for macro-and meso-materials is established. Then, based on the instantaneous strain analysis method and statistical damage theory, the deformation analysis methods for the soft and hard materials are proposed respectively, so as to establish the statistical damage constitutive model for the full stress-strain curve of rocks considering confining pressure effect and strength brittle drop, and the determination methods for the model parameters are given. Finally, through model verification and analysis, the proposed model can describe the relationship between the initial macro-deformation characteristics of rocks and the confining pressure and eliminate the randomness of the axial post-peak theoretical deformation curve, so it can accurately simulate the full stress-strain curve of rocks, which shows that the above methods are reasonable and feasible.
  • [1]
    陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科学技术大学出版社, 2009.

    CHEN Yong, HUANG Ting-fang, LIU En-ru. Rock Physics[M]. Hefei: Press of University of Science and Technology of China, 2009. (in Chinese)
    [2]
    KRAJCINOVIC D, SILVA M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids and Structures, 1982, 18(7): 551–562. doi: 10.1016/0020-7683(82)90039-7
    [3]
    ZHAO H, ZHANG C, CAO W G, et al. Statistical mesodamage model for quasi-brittle rocks to account for damage tolerance principle[J]. Environmental Earth Sciences, 2016, 75(10): 1–12.
    [4]
    JIANG H B, LI K N, HOU X B. Statistical damage model of rocks reflecting strain softening considering the influences of both damage threshold and residual strength[J]. Arabian Journal of Geosciences, 2020, 13(7): 1–8.
    [5]
    曹文贵, 戴笠, 张超. 深部岩石统计损伤本构模型研究[J]. 水文地质工程地质, 2016, 43(4): 60–65. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604011.htm

    CAO Wen-gui, DAI Li, ZHANG Chao. A study of statistical damage constitutive models for deep earth rocks[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 60–65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604011.htm
    [6]
    张慧梅, 谢祥妙, 彭川, 等. 三向应力状态下冻融岩石损伤本构模型[J]. 岩土工程学报, 2017, 39(8): 1444–1452. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16984.shtml

    ZHANG Hui-mei, XIE Xiang-miao, PENG Chuan, et al. Constitutive model for damage of freeze-thaw rock under three-dimensional stress[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1444–1452. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16984.shtml
    [7]
    ZHU Z N, TIAN H, WANG R, et al. Statistical thermal damage constitutive model of rocks based on Weibull distribution[J]. Arabian Journal of Geosciences, 2021, 14(6): 1-14.
    [8]
    张明, 王菲, 杨强. 基于三轴压缩试验的岩石统计损伤本构模型[J]. 岩土工程学报, 2013, 35(11): 1965–1971. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15325.shtml

    ZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1965–1971. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15325.shtml
    [9]
    DENG J, GU D S. On a statistical damage constitutive model for rock materials[J]. Computers & Geosciences, 2011, 37(2): 122–128. https://www.sciencedirect.com/science/article/pii/S0098300410002700
    [10]
    金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939–951. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003025.htm

    JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion[J]. Rock and Soil Mechanics, 2020, 41(3): 939–951. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003025.htm
    [11]
    ZHAO H, SHI C J, ZHAO M H, et al. Statistical damage constitutive model for rocks considering residual strength[J]. International Journal of Geomechanics, 2017, 17(1): 04016033. doi: 10.1061/(ASCE)GM.1943-5622.0000680
    [12]
    刘齐建, 杨林德, 曹文贵. 岩石统计损伤本构模型及其参数反演[J]. 岩石力学与工程学报, 2005, 24(4): 616–621. doi: 10.3321/j.issn:1000-6915.2005.04.012

    LIU Qi-jian, YANG Lin-de, CAO Wen-gui. Statistical damage constitutive model for rock and back analysis of its parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 616–621. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.04.012
    [13]
    温韬, 唐辉明, 马俊伟, 等. 考虑初始损伤和残余强度的岩石变形过程模拟[J]. 地球科学, 2019, 44(2): 652–663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902026.htm

    WEN Tao, TANG Hui-ming, MA Jun-wei, et al. Deformation simulation for rock in consideration of initial damage and residual strength[J]. Earth Science, 2019, 44(2): 652–663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902026.htm
    [14]
    CAO W G, TAN X, ZHANG C, et al. Constitutive model to simulate full deformation and failure process for rocks considering initial compression and residual strength behaviors[J]. Canadian Geotechnical Journal, 2019, 56(5): 649–661. doi: 10.1139/cgj-2018-0178
    [15]
    ROSENGREN K J, JAEGER J C. The mechanical properties of an interlocked low-porosity aggregate[J]. Géotechnique, 1968, 18(3): 317–326. doi: 10.1680/geot.1968.18.3.317
    [16]
    徐志英. 岩石力学[M]. 北京: 中国水利水电出版社, 1993.

    XU Zhi-ying. Rock Mechanics[M]. Beijing: China Water Power Press, 1993. (in Chinese)
    [17]
    ZHAO Y, LIU H H. An elastic stress–strain relationship for porous rock under anisotropic stress conditions[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 389–399. doi: 10.1007/s00603-011-0193-y
    [18]
    LI X, CAO W G, SU Y H. A statistical damage constitutive model for softening behavior of rocks[J]. Engineering Geology, 2012, 143/144: 1–17. doi: 10.1016/j.enggeo.2012.05.005
    [19]
    TARASOV B, POTVIN Y. Universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59: 57–69. doi: 10.1016/j.ijrmms.2012.12.011
  • Cited by

    Periodical cited type(6)

    1. 包卫星,吴倩,吴谦,秦川,侯天琪. 冻融循环作用下伊犁盐渍化黄土力学特性. 岩石力学与工程学报. 2024(07): 1775-1787 .
    2. 伊学涛,尚彦军,孟庆森,孟和,崔振东,贺强. 不同吸力下伊犁河谷原状非饱和黄土强度特性试验研究. 工程地质学报. 2024(03): 760-771 .
    3. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 .
    4. 周昌,黄顺. 新疆伊犁黄土工程地质特征及致灾机理研究综述. 工程地质学报. 2023(04): 1247-1260 .
    5. 邓洪力,姜海波,侍克斌,赵海姣. 新疆伊犁湿陷性黄土输水渠道湿陷变形特性及影响因素分析. 水资源与水工程学报. 2023(06): 139-146 .
    6. 刘飞禹,赵川,孙宏磊,张诗珣. 含盐量对硫酸钠盐渍土–混凝土界面剪切特性的影响研究. 岩石力学与工程学报. 2022(08): 1680-1688 .

    Other cited types(14)

Catalog

    Article views (220) PDF downloads (107) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return