• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chao, CAO Wen-gui, ZHAO Heng, HE Min. Statistical damage simulation method for complete stress-strain path of rocks considering confining pressure effect and strength brittle drop[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 936-944. DOI: 10.11779/CJGE202205017
Citation: ZHANG Chao, CAO Wen-gui, ZHAO Heng, HE Min. Statistical damage simulation method for complete stress-strain path of rocks considering confining pressure effect and strength brittle drop[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 936-944. DOI: 10.11779/CJGE202205017

Statistical damage simulation method for complete stress-strain path of rocks considering confining pressure effect and strength brittle drop

More Information
  • Received Date: October 19, 2020
  • Available Online: September 22, 2022
  • To establish a statistical damage simulation method which can accurately describe the full stress-strain curve of rocks, aiming at the serious defects of the existing statistical damage constitutive models in simulating confining pressure effect and strength brittle drop, firstly, based on the basic deformation characteristics of brittle rocks under triaxial compression, the rocks are regarded as a series of two meso-materials: soft and hard materials, and the deformation analysis model for macro-and meso-materials is established. Then, based on the instantaneous strain analysis method and statistical damage theory, the deformation analysis methods for the soft and hard materials are proposed respectively, so as to establish the statistical damage constitutive model for the full stress-strain curve of rocks considering confining pressure effect and strength brittle drop, and the determination methods for the model parameters are given. Finally, through model verification and analysis, the proposed model can describe the relationship between the initial macro-deformation characteristics of rocks and the confining pressure and eliminate the randomness of the axial post-peak theoretical deformation curve, so it can accurately simulate the full stress-strain curve of rocks, which shows that the above methods are reasonable and feasible.
  • [1]
    陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科学技术大学出版社, 2009.

    CHEN Yong, HUANG Ting-fang, LIU En-ru. Rock Physics[M]. Hefei: Press of University of Science and Technology of China, 2009. (in Chinese)
    [2]
    KRAJCINOVIC D, SILVA M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids and Structures, 1982, 18(7): 551–562. doi: 10.1016/0020-7683(82)90039-7
    [3]
    ZHAO H, ZHANG C, CAO W G, et al. Statistical mesodamage model for quasi-brittle rocks to account for damage tolerance principle[J]. Environmental Earth Sciences, 2016, 75(10): 1–12.
    [4]
    JIANG H B, LI K N, HOU X B. Statistical damage model of rocks reflecting strain softening considering the influences of both damage threshold and residual strength[J]. Arabian Journal of Geosciences, 2020, 13(7): 1–8.
    [5]
    曹文贵, 戴笠, 张超. 深部岩石统计损伤本构模型研究[J]. 水文地质工程地质, 2016, 43(4): 60–65. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604011.htm

    CAO Wen-gui, DAI Li, ZHANG Chao. A study of statistical damage constitutive models for deep earth rocks[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 60–65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604011.htm
    [6]
    张慧梅, 谢祥妙, 彭川, 等. 三向应力状态下冻融岩石损伤本构模型[J]. 岩土工程学报, 2017, 39(8): 1444–1452. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16984.shtml

    ZHANG Hui-mei, XIE Xiang-miao, PENG Chuan, et al. Constitutive model for damage of freeze-thaw rock under three-dimensional stress[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1444–1452. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16984.shtml
    [7]
    ZHU Z N, TIAN H, WANG R, et al. Statistical thermal damage constitutive model of rocks based on Weibull distribution[J]. Arabian Journal of Geosciences, 2021, 14(6): 1-14.
    [8]
    张明, 王菲, 杨强. 基于三轴压缩试验的岩石统计损伤本构模型[J]. 岩土工程学报, 2013, 35(11): 1965–1971. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15325.shtml

    ZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1965–1971. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15325.shtml
    [9]
    DENG J, GU D S. On a statistical damage constitutive model for rock materials[J]. Computers & Geosciences, 2011, 37(2): 122–128. https://www.sciencedirect.com/science/article/pii/S0098300410002700
    [10]
    金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939–951. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003025.htm

    JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion[J]. Rock and Soil Mechanics, 2020, 41(3): 939–951. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003025.htm
    [11]
    ZHAO H, SHI C J, ZHAO M H, et al. Statistical damage constitutive model for rocks considering residual strength[J]. International Journal of Geomechanics, 2017, 17(1): 04016033. doi: 10.1061/(ASCE)GM.1943-5622.0000680
    [12]
    刘齐建, 杨林德, 曹文贵. 岩石统计损伤本构模型及其参数反演[J]. 岩石力学与工程学报, 2005, 24(4): 616–621. doi: 10.3321/j.issn:1000-6915.2005.04.012

    LIU Qi-jian, YANG Lin-de, CAO Wen-gui. Statistical damage constitutive model for rock and back analysis of its parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 616–621. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.04.012
    [13]
    温韬, 唐辉明, 马俊伟, 等. 考虑初始损伤和残余强度的岩石变形过程模拟[J]. 地球科学, 2019, 44(2): 652–663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902026.htm

    WEN Tao, TANG Hui-ming, MA Jun-wei, et al. Deformation simulation for rock in consideration of initial damage and residual strength[J]. Earth Science, 2019, 44(2): 652–663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902026.htm
    [14]
    CAO W G, TAN X, ZHANG C, et al. Constitutive model to simulate full deformation and failure process for rocks considering initial compression and residual strength behaviors[J]. Canadian Geotechnical Journal, 2019, 56(5): 649–661. doi: 10.1139/cgj-2018-0178
    [15]
    ROSENGREN K J, JAEGER J C. The mechanical properties of an interlocked low-porosity aggregate[J]. Géotechnique, 1968, 18(3): 317–326. doi: 10.1680/geot.1968.18.3.317
    [16]
    徐志英. 岩石力学[M]. 北京: 中国水利水电出版社, 1993.

    XU Zhi-ying. Rock Mechanics[M]. Beijing: China Water Power Press, 1993. (in Chinese)
    [17]
    ZHAO Y, LIU H H. An elastic stress–strain relationship for porous rock under anisotropic stress conditions[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 389–399. doi: 10.1007/s00603-011-0193-y
    [18]
    LI X, CAO W G, SU Y H. A statistical damage constitutive model for softening behavior of rocks[J]. Engineering Geology, 2012, 143/144: 1–17. doi: 10.1016/j.enggeo.2012.05.005
    [19]
    TARASOV B, POTVIN Y. Universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59: 57–69. doi: 10.1016/j.ijrmms.2012.12.011
  • Related Articles

    [1]HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
    [2]WEI Ran, ZHANG Liya, XIAO Zhirui, YAN Jun, WANG Bo. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 92-96. DOI: 10.11779/CJGE2023S10050
    [3]ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
    [4]ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. DOI: 10.11779/CJGE201412007
    [5]WANG Shu-guang. Deformation control of excavation engineering with complicated surroundings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 474-477.
    [6]LIU Huan-cun, LI Liang-jie, WANG Cheng-liang, WEI Hai-tao. Design and deformation control of excavation support project close to a subway station[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 654-658.
    [7]LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643.
    [8]LI Zhi-wei, HOU Wei-sheng, YE Ai-li, CHEN Ke-shuai, TANG Yong. Displacement control effect of passive zone improvement at excavation section of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 621-627.
    [9]SUN Jian-ping, SHAO Guang-biao, JIANG Zong-bao. Design and construction technology of displacement control in deep miscellaneous fill foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 576-580.
    [10]GAO Meng, GAO Guangyun, FENG Shijin, YU Zhisong. Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 818-823.
  • Cited by

    Periodical cited type(24)

    1. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 陈强,秦子鹏,蒋宁,周林真,陈增然,秦玉禹,李桃,彭杨. 降雨和水位变化条件下排涝河道岸坡稳定性的数值研究. 水资源与水工程学报. 2024(01): 186-196 .
    4. 张德辉,刘伟明,冯善周,郝献省. 膨胀土边坡失稳与防治研究. 科技创新与生产力. 2024(04): 134-136+140 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 李世明,胡卫军,韩琳琳. 锚杆支护形式对高陡公路边坡稳定性的影响研究. 西部交通科技. 2024(05): 34-37 .
    7. 王骜洵,蒋函静,许帅,徐永福. 降雨入渗下非饱和土边坡浅层破坏机制分析. 中南大学学报(自然科学版). 2024(07): 2701-2711 .
    8. 冀春杰,胡贺松,崔皓,简思敏,蒋明烨,韦童. 典型特殊土处理技术研究进展. 广州建筑. 2024(04): 105-108 .
    9. 韦秉旭,曾警,程聪,陈楚方,王起. 基于流固耦合的加筋膨胀土边坡稳定性分析. 公路. 2024(09): 8-15 .
    10. 时小波,崔广炎,牟超,温野,谢峰,付啸阳. 高寒区上覆岩石层膨胀土失稳边坡治理方法研究. 中外公路. 2024(05): 17-24+38 .
    11. 白玉霞,常顺,肖衡林,李丽华,何俊,邱季,周文卓,邓永锋. 膨胀土生态治理研究进展. 岩土工程学报. 2024(S2): 60-66+176 . 本站查看
    12. 赵二平,唐加林,李志坤,张聪. 不同初始含水率下广西膨胀土膨胀变形规律及劣化机理研究. 人民珠江. 2024(11): 115-123 .
    13. 陈敏. 机场滑坡与桩锚结构支护方案研究. 江西建材. 2024(12): 227-228+235 .
    14. 刘振北. 膨胀土滑坡基本特征分析及防治措施研究. 江西建材. 2023(02): 114-115+118 .
    15. 孙超. 粉煤灰掺量对膨胀土抗剪强度的改性影响. 水利建设与管理. 2023(05): 25-30 .
    16. 吴新华,闫林芳. 滑坡防治措施设计及运营效果评价. 江西建材. 2023(04): 130-132 .
    17. 欧阳荣,吴永东. 超高边坡防治方案设计及运营效果分析. 江西建材. 2023(07): 96-97+100 .
    18. 邱兵,白慧林. 锚杆挡墙加固高陡土质边坡设计探讨——以岗白路K8+290~K8+400段路基边坡为例. 科技和产业. 2023(21): 221-226 .
    19. 周钊. 弱膨胀土路基固坡防护施工研究. 交通世界. 2023(31): 52-54 .
    20. 曹正波,李建朋. 上硬下软型膨胀土路堑滑塌成因与处治. 公路. 2023(12): 39-43 .
    21. 李晶,梁力川,邵雪停,季军远,王玉. 考虑降雨和地震作用下的铁路边坡稳定性分析. 山东农业大学学报(自然科学版). 2023(06): 887-896 .
    22. 凌时光,张锐,兰天. 膨胀土强度特性的研究进展与探究. 长沙理工大学学报(自然科学版). 2023(06): 1-16 .
    23. 周锐,王保田,王东英,王斯杰,张福海. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析. 农业工程学报. 2023(21): 98-107 .
    24. 张梦涵,魏进,卞海丁. 基于机器学习的边坡稳定性分析方法——以国内618个边坡为例. 地球科学与环境学报. 2022(06): 1083-1095 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return