• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243
Citation: XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243

Temperature effects and prediction model of thermal conductivity of soil

More Information
  • Received Date: March 08, 2022
  • Available Online: February 15, 2023
  • Considering the influences of environmental temperature on thermal conductivity of soil is necessary for the optimization design and safety assessment of underground thermal engineering projects. The thermal conductivities of lateritic clay, silt clay, soft clay and bentonite at different temperatures are measured by using the thermal probe method, and the temperature effects of thermal conductivity of soil and its influencing factors are analyzed. A weighted geometric average model considering the temperature effects of thermal conductivity of soil is then established, and is compared with the traditional predictive models. The test results show that the thermal conductivity of soil increases with the increase of temperature, and its temperature effects decrease with the increase of dry density. The temperature has a great influence on the thermal conductivity of unsaturated soil, but a weak influence on the thermal conductivity of dry and saturated soil. The temperature effects of thermal conductivity of soil may depend on the change of the latent heat transfer of vapor. The more the moisture and vapor migration channels that can provide for the latent heat transfer of vapor in soil, the more significant the temperature effects of thermal conductivity of soil. The calculated results show that the proposed weighted geometric average model provides the best fitting to the measured data against the three other traditional models, and can predict well the influences of water content and dry density on the temperature effects of thermal conductivity of soil, while the prediction accuracy of the Tarnawski model, Gori model and Leong model is lower than that of the weighted geometric average model.
  • [1]
    HAN L, YE G L, LI Y H, et al. In situ monitoring of frost heave pressure during cross passage construction using ground-freezing method[J]. Canadian Geotechnical Journal, 2016, 53(3): 530–539. doi: 10.1139/cgj-2014-0486
    [2]
    王驹, 苏锐, 陈伟明, 等. 中国高放废物深地质处置[J]. 岩石力学与工程学报, 2006, 25(4): 649-658. doi: 10.3321/j.issn:1000-6915.2006.04.001

    WANG Ju, SU Rui, CHEN Weiming, et al. Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 649-658. (in Chinese)) doi: 10.3321/j.issn:1000-6915.2006.04.001
    [3]
    张虎元, 赵秉正, 童艳梅. 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-9, 18. doi: 10.16285/j.rsm.2019.0865

    ZHANG Huyuan, ZHAO Bingzheng, TONG Yanmei. Thermal conductivity and uniformity of hybrid buffer blocks[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-9, 18. (in Chinese)) doi: 10.16285/j.rsm.2019.0865
    [4]
    陆浩杰, 孔纲强, 刘汉龙, 等. 黏土热–力学特性对能量桩力学特性的影响[J]. 岩土工程学报, 2022, 44(1): 53-61. doi: 10.11779/CJGE202201004

    LU Haojie, KONG Gangqiang, LIU Hanlong, et al. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. (in Chinese)) doi: 10.11779/CJGE202201004
    [5]
    OCŁOŃ P, BITTELLI M, CISEK P, et al. The performance analysis of a new thermal backfill material for underground power cable system[J]. Applied Thermal Engineering, 2016, 108: 233-250. doi: 10.1016/j.applthermaleng.2016.07.102
    [6]
    ALI M A, BOUAZZA A, SINGH R M, et al. Thermal conductivity of geosynthetic clay liners[J]. Canadian Geotechnical Journal, 2016, 53(9): 1510-1521. doi: 10.1139/cgj-2015-0585
    [7]
    刘晨晖, 周东, 吴恒. 土壤热导率的温度效应试验和预测研究[J]. 岩土工程学报, 2011, 33(12): 1877-1886. http://www.cgejournal.com/cn/article/id/14443

    LIU Chenhui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886. (in Chinese)) http://www.cgejournal.com/cn/article/id/14443
    [8]
    ABU-HAMDEH N H, REEDER R C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter[J]. Soil Science Society of America Journal, 2000, 64(4): 1285-1290. doi: 10.2136/sssaj2000.6441285x
    [9]
    CÔ TÉ J, KONRAD J M. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials[J]. International Journal of Heat and Mass Transfer, 2009, 52(3/4): 796-804. http://www.onacademic.com/detail/journal_1000034585683810_f6ca.html
    [10]
    李建东, 王旭, 张延杰, 等. 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186-192. doi: 10.16285/j.rsm.2020.0671

    LI Jiandong, WANG Xu, ZHANG Yanjie, et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics, 2021, 42(1): 186-192. (in Chinese)) doi: 10.16285/j.rsm.2020.0671
    [11]
    徐永丽, 董子建, 周吉森, 等. 冻融及不同温度下石灰改良盐渍土动力参数研究[J]. 岩土工程学报, 2022, 44(1): 90-97. doi: 10.11779/CJGE202201008

    XU Yongli, DONG Zijian, ZHOU Jisen, et al. Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 90-97. (in Chinese)) doi: 10.11779/CJGE202201008
    [12]
    陆森, 任图生. 不同温度下的土壤热导率模拟[J]. 农业工程学报, 2009, 25(7): 13-18. doi: 10.3969/j.issn.1002-6819.2009.07.003

    LU Sen, REN Tusheng. Model for predicting soil thermal conductivity at various temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 13-18. (in Chinese)) doi: 10.3969/j.issn.1002-6819.2009.07.003
    [13]
    HIRAIWA Y, KASUBUCHI T. Temperature dependence of thermal conductivity of soil over a wide range of temperature (5-75℃)[J]. European Journal of Soil Science, 2000, 51(2): 211-218. doi: 10.1046/j.1365-2389.2000.00301.x
    [14]
    DE VRIES D A. Thermal properties of soils[M]// Physics of the Plant Environment. New York: John Wiley & Sons, 1963: 210–235.
    [15]
    CAMPBELL G S, JUNGBAUER J D JR, BIDLAKE W R, et al. Predicting the effect of temperature on soil thermal conductivity[J]. Soil Science, 1994, 158(5): 307-313. doi: 10.1097/00010694-199411000-00001
    [16]
    TARNAWSKI V R, GORI F, WAGNER B, et al. Modelling approaches to predicting thermal conductivity of soils at high temperatures[J]. International Journal of Energy Research, 2000, 24(5): 403-423. doi: 10.1002/(SICI)1099-114X(200004)24:5<403::AID-ER588>3.0.CO;2-#
    [17]
    TARNAWSKI V R, LEONG W H, BRISTOW K L. Developing a temperature-dependent Kersten function for soil thermal conductivity[J]. International Journal of Energy Research, 2000, 24(15): 1335-1350. doi: 10.1002/1099-114X(200012)24:15<1335::AID-ER652>3.0.CO;2-X
    [18]
    TARNAWSKI V R, LEONG W H, GORI F, et al. Inter-particle contact heat transfer in soil systems at moderate temperatures[J]. International Journal of Energy Research, 2002, 26(15): 1345-1358. doi: 10.1002/er.853
    [19]
    LEONG W H, TARNAWSKI V R, GORI F, et al. Inter-particle contact heat transfer model: an extension to soils at elevated temperatures[J]. International Journal of Energy Research, 2005, 29(2): 131-144. http://www.onacademic.com/detail/journal_1000033835823010_a7ac.html
    [20]
    张延军, 于子望, 黄芮, 等. 岩土热导率测量和温度影响研究[J]. 岩土工程学报, 2009, 31(2): 213-217. http://www.cgejournal.com/cn/article/id/13137

    ZHANG Yanjun, YU Ziwang, HUANG Rui, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 213-217. (in Chinese) http://www.cgejournal.com/cn/article/id/13137
    [21]
    JOHANSEN O. Thermal Conductivity of Soils[D]. Trondheim: Trondheim University, 1977.
    [22]
    GORI F, CORASANITI S. Theoretical prediction of the soil thermal conductivity at moderately high temperatures[J]. Journal of Heat Transfer, 2002, 124(6): 1001–1008. http://www.onacademic.com/detail/journal_1000039881038510_246d.html
    [23]
    RAWLS W J, BRAKENSIEK D L, SAXTONN K E. Estimation of soil water properties[J]. Transactions of the ASAE, 1982, 25(5): 1316-1320. http://www.onacademic.com/detail/journal_1000040323169810_e328.html
    [24]
    WEBB S W, HO C K. Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data: does enhanced vapor-phase diffusion exist?[J]. Journal of Porous Media, 1998, 1(1): 71-92. http://digital.library.unt.edu/ark:/67531/metadc668347/m2/1/high_res_d/242788.pdf
    [25]
    WOODSIDE W, MESSMER J H. Thermal conductivity of porous media. II. consolidated rocks[J]. Journal of Applied Physics, 1961, 32(9): 1699-1706. http://gji.oxfordjournals.org/external-ref?access_num=10.1063/1.1728420&link_type=DOI
    [26]
    NIKOLAEV I V, LEONG W H, ROSEN M A. Experimental investigation of soil thermal conductivity over a wide temperature range[J]. International Journal of Thermophysics, 2013, 34(6): 1110-1129.
    [27]
    PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222. http://www.onacademic.com/detail/journal_1000037379730410_e312.html
    [28]
    TANG A M, CUI Y J. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296. http://arxiv.org/abs/0710.1850
    [29]
    ZHU Z C, SUN D A, ZHOU A N, et al. Calibration of two filter papers at different temperatures and its application to GMZ bentonite[J]. Environmental Earth Sciences, 2016, 75(6): 509. http://www.onacademic.com/detail/journal_1000038747726510_dfef.html
    [30]
    王平全, 李晓红. 用热失重法确定水合黏土水分含量及存在形式[J]. 天然气工业, 2006, 26(1): 80-83, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601025.htm

    WANG Pingquan, LI Xiaohong. Thermal-weightlessness method to determine water content and existing form of hydratable clay[J]. Natural Gas Industry, 2006, 26(1): 80-83, 164. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601025.htm
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return