• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Xiang-dong, DENG Sheng-jun, WANG Yang. Mechanical tests on bearing capacity of steel pipe-frozen soil composite structure applied in Gongbei Tunnel[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1481-1490. DOI: 10.11779/CJGE201808014
Citation: HU Xiang-dong, DENG Sheng-jun, WANG Yang. Mechanical tests on bearing capacity of steel pipe-frozen soil composite structure applied in Gongbei Tunnel[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1481-1490. DOI: 10.11779/CJGE201808014

Mechanical tests on bearing capacity of steel pipe-frozen soil composite structure applied in Gongbei Tunnel

More Information
  • Received Date: May 11, 2017
  • Published Date: August 24, 2018
  • The freezing-sealing pipe roof (FSPR) as an innovative pre-supporting method in tunnel engineering has been applied to Gongbei Tunnel of Hong Kong-Zhuhai-Macau Bridge, which is the first application in the world. The definition of FSPR is that large-diameter steel pipes are laid out in a circle around the cross section of the tunnel in advance, and then the artificial ground freezing method is adopted to the freeze soil between steel pipes to form waterproof curtain. To study the bearing capacities of the steel pipe-frozen soil composite structure and the appropriate temperature of frozen soil between steel pipes in the actual project, the mechanical tests on steel pipe-frozen soil composite structure are conducted by using a uniaxial compression testing system of frozen soil with four different temperatures. The criterion for the ultimate deformation state of steel pipe-frozen soil composite structure under waterproofing is proposed. The bearing and deformation capacities of the composite structure under waterproofing are judged from the load-displacement curves in the tests. The results show that at relatively higher temperature, the deformation capacities of frozen soil following the steel pipes are better, but the bearing and deformation capacities of composite structure are relatively poor due to the low strength of frozen soil. Similarly, at relatively lower temperature, the results are relatively poor due to the poor plasticity of the frozen soil. When the temperature is moderate, the bearing and deformation capacities of composite structure are relatively strong, that is, the capability to withstand deformation and to bear the ultimate load is the largest. The ideal temperature of the frozen soil between steel pipes is about -10℃ and it has been adopted in the actual construction of Gongbei Tunnel, which is of reference value for similar construction.
  • [1]
    何小龙, 程勇, 郭小红. 港珠澳大桥珠海连接线工程拱北隧道设计[J]. 土工基础, 2012(9): 244-248.
    (HE Xiao-long, CHENG Yong, GUO Xiao-hong.Gongbei Tunnel design of HongKong-Zhuhai-Macau Bridge connector project[J]. Soil Engineering and Foundation, 2012(9): 244-248. (in Chinese))
    [2]
    潘建立, 高海东, 史培新. 拱北隧道暗挖段管幕组合方案优化研究[J]. 现代隧道技术, 2015, 52(3): 55-62.
    (PAN Jian-li, GAO Hai-dong, SHI Pei-xin.A study of combined Pipe-Roof scheme optimization for the bored section of the Gongbei Tunnel[J]. Modern Tunnelling Technology, 2015, 52(3): 55-62. (in Chinese))
    [3]
    HU X, DENG S, REN H.In situ test study on freezing scheme of freeze-sealing pipe roof applied to the Gongbei Tunnel in the Hong Kong-Zhuhai-Macau Bridge[J]. Appl Sci, 2017, 7(1): 27.
    [4]
    周晓敏, 张国亮. “冻土+管棚”复合结构的承载性能研究及其应用分析[J]. 市政技术, 2004, 22(增刊): 341-344.
    (ZHOU Xiao-min, ZHANG Guo-liang.Bearing capacity research and application analysis on “frozen soil and pipe lodgepole” composite structure[J]. Municipal Engineering Technology, 2004, 22(S0): 341-344. (in Chinese))
    [5]
    梁洪振, 赵志福. 复合冻土结构的承载性能研究及其应用分析[C]// 矿山建设工程新进展—2006全国矿山建设学术会议文集(上册). 北京, 2006: 440-445.
    (LIANG Hong-zhen, ZHAO Zhi-fu.Compound frozen earth structure load bearing performance research and its applied analysis[C]// New Progress in Mine Construction Engineering: The Sessions of The National Mine Construction of Academic Essays (The First Volume). Beijing, 2006: 440-445. (in Chinese))
    [6]
    BRUN B, HA H.Underground line U5 'unter den linden' Berlin, Germany structural and thermal fe-calculations for ground freezing design[C]// Proc Int Conf Numerical Simulation of Construction Processes in Geotechnical Eng for Urban Environment. Berlin, 2006: 225-232.
    [7]
    鎌倉友, 阿曽利光, 浜口幸一, 等. 小口径シールドの包含による大断面拡幅工法(SR-J 工法)の開発[J]. 土木学会第60回年次学術講演会, 2005, 60(1): 165-166.
    (KAMAKURA T, ASO T, HAMAGUCHI K, et al.Development of tunnel expansion method (SR-J) for underground highway junction[J]. Proceedings of the 60 Annual Conference of the Japan Society of Civil Engineers. Japan, 2005, 60(1): 165-166. (in Japanese))
    [8]
    浜口幸一, 矢部幸男, 吉武謙二. 小口径シールド結合リングによる超大断面拡幅工法(SR-JP 工法)の開発[J].土木学会第61回年次学術講演会, 2006, 61(1): 139-140.
    (HAMAGUCHI K, YABE Y, YOSHITAKE K.Development of small diameter shield combined large-section widening method (SR-JP)[J]. Proceedings of the 61 Annual Conference of the Japan Society of Civil Engineers, 2006, 61(1): 139-140. (in Japanese))
    [9]
    夏慧民, 牛富俊. 冻结管对人工冻结构件加筋作用的试验及数值模拟[J]. 冰川冻土, 2002, 24(2): 155-159.
    (XIA Hui-min, NIU Fu-jun.Experimental study and numerical simulation of the reinforcement of embedded freezing pipes on artificial frozen components[J]. Journal of Glaciology and Geocryology, 2002, 24(2): 155-159. (in Chinese))
    [10]
    上田保司, 生頼孝博, 鋼管補強による凍土梁の曲げ強度特性の改良[J]. 土木学会論文報告集, 2001, 12: 81-90.
    (UEDA Y, OHRAI T.Improvement of bending strength of frozen soil beam reinforced by steel pipe[J]. Proceedings of the Japan Society of Civil Engineers, 2001, 12: 81-90. (in Japanese))
    [11]
    森内浩史, 上田保司, 生頼孝博. 鋼管変形に対する凍土の追随性把握実験[J]. 土木学会第58回年次学術講演会, 2003, 58(4): 753-754.
    (MORIUCHI K, UEDA Y, OHRAI T.Study on the fitting ability of frozen soil and steel pipes[J]. Proceedings of the 58 Annual Conference of the Japan Society of Civil Engineers, 2003, 58(4): 753-754. (in Japanese))
    [12]
    杨维好, 黄家会. 冻结管受力分析与试验研究[J]. 冰川冻土, 1999, 21(1): 33-38.
    (YANG Wei-hao, HUANG Jia-hui.Theoretical analyses and experimental research on stresses in freezing pipes[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 33-38. (in Chinese))
    [13]
    周晓敏. 冻结管在冻结壁变形段内的受力计算[J]. 煤炭学报, 1996, 21(1): 30-34.
    (ZHOU Xiao-min.Stressing of freeze pipe in the deformed section of ice wall[J]. Journal of China Coal Society, 1996, 21(1): 30-34. (in Chinese))
    [14]
    森内浩史, 上田保司, 生頼孝博. 鋼管間止水凍土の凍着維持に関する研究[J]. 土木学会論文集, 2008, 64(2): 294-306.
    (MORIUCHI K, UEDA Y, OHRAI T.Study on the zdfreeze between frozen soil and steel pipes for cutoff of water[J]. Proceedings of The Japan Society of Civil Engineers, 2008, 64(2): 294-306. (in Japanese))
    [15]
    隅谷大作, 上田保司, 生頼孝博. 曲線形凍土と構造物との凍着維持に関する安全性評価[J]. 第39回地盤工学研究发表会, 2004, 39(6): 1103-1104.
    (SUMIYA D, UEDA Y, OHRAI T.Safety evaluation of interface between frozen soil and structure[J]. Proceedings of the 39 Annual Conference of the Japan Society of Geotechnical Engineering, 2004, 39(6): 1103-1104. (in Japanese))
    [16]
    汪洋. 管幕冻结法钢管-冻土复合结构力学性能研究 [D]. 上海: 同济大学, 2013.
    (WANG Yang.Mechanical property analysis of steel pipe-frozen soil composite structure in freeze-sealing pipe roof method[D]. Shanghai: Tongji University, 2013. (in Chinese))
    [17]
    张鹏, 王翔宇, 曾聪, 等. 深埋曲线钢顶管受力特性现场监测试验研究[J]. 岩土工程学报, 2016, 38(10): 1842-1848.
    (ZHANG Peng, WANG Xiang-yu, ZENG Cong, et al.Site monitoring of mechanical characteristics of pipes during steel curved pipe jacking under large buried depth[J]. Chinese J Geot Eng, 2016, 38(10): 1842-1848. (in Chinese))
    [18]
    李鸿升, 朱元林, 刘增利, 等. 冻土脆性破坏统计理论及尺寸效应[J]. 自然科学进展, 1998, 8(6): 715-720.
    (LI Hong-sheng, ZHU Yuan-lin, LIU Zeng-li, et al.Statistical theory and size effect of brittle failure of frozen soil[J]. Advanced in Natural Science, 1998, 8(6): 715-720. (in Chinese))
    [19]
    沈忠言, 彭万巍, 王显耀, 等. 应变速率及温度对冻结黄土抗拉强度的影响[J]. 冰川冻土, 1995, 17(增刊): 71-75.
    (SHEN Zhong-yan, PENG Wan-wei, WANG Xian-yao, et al.Effect of strain rate and temperature on tensile strength of frozen loess[J]. Journal of Glaciology and Geocryology, 1995, 17(S0): 71-75.(in Chinese))
    [20]
    ZHU Y L, ZHANG J Y, PENG W W, et al.Constitutive relation of frozen soil in uniaxial compression[C]// Proc of 6th ISGF. Beijing: South China University of Technotoge Press, 1991: 211-216.
  • Related Articles

    [1]ZHOU Jie, ZHU Kefan, LIU Chengjun, SHEN Panpan. Shear characteristics of steel pile-soft clay interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 49-53. DOI: 10.11779/CJGE2024S20038
    [2]YAN Junbiao, KONG Lingwei, LI Tianguo, ZHOU Zhenhua. Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1445-1452. DOI: 10.11779/CJGE20230350
    [3]ZHOU Baochun, WANG Jiangwei, SHAN Lixia, LI Ying, LANG Mengting, KONG Lingwei. Torsional ring shear tests on residual strength of expansive soils with different swelling potentials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1325-1331. DOI: 10.11779/CJGE20230225
    [4]MIAO Fasheng, ZHAO Fancheng, WU Yiping, MENG Jiajia. Strength characteristics of slip zone soils of Tongjiaping landslide in Three Gorges Reservoir area based on seepage-ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1480-1489. DOI: 10.11779/CJGE20220456
    [5]LIN Peiyuan, GUO Panfeng, GUO Chengchao, CHEN Lichao, WANG Fuming. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93. DOI: 10.11779/CJGE20210845
    [6]WANG Jun, ZHU Chen, LIU Fei-yu, KONG Jian-jie, YAO Jia-min. Shear strength of reinforced soil interface under normal cyclic loading and its prediction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 954-960. DOI: 10.11779/CJGE202205019
    [7]FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, YANG Ying-ming, WEN Tao. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014
    [8]YAN Shu-wang, LIN Shu, JIA Zhao-lin, LANG Rui-qing. Large-scale direct shear tests on shear strength of interface between marine soil and steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 495-501. DOI: 10.11779/CJGE201803013
    [9]XU Xiao-feng, WEI Hou-zhen, MENG Qing-shan, WEI Chang-fu, AI Dong-hai. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733.
    [10]YE Weimin, CHEN Bao, BIAN Zuoxiu, ZHU Hehua, BAI Yun. Tri-axial shear strength of Shanghai unsaturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 317-321.
  • Cited by

    Periodical cited type(26)

    1. 陈存强,汪义龙,周延明,顾雷雨,曹睿,冯来宏,高利晶,杨康. 灵东煤矿上分层综放开采型煤相似材料模拟试验研究. 煤炭技术. 2024(01): 51-55 .
    2. 郑纪峰,李啸天. 厚硬顶板隅角悬顶分段多次水力压裂技术研究. 煤炭技术. 2024(03): 21-25 .
    3. 刘洪涛,罗紫龙,韩子俊,韩洲,陈小港,彭佳琛. 厚煤层大采高综放工作面覆岩断裂演化规律研究. 煤炭科学技术. 2024(03): 1-12 .
    4. 秦志宏,赵光明,孟祥瑞,程详,顾清恒,朱世奎. 基于分布式光纤技术的深井工作面覆岩采动裂隙演化规律研究. 采矿与安全工程学报. 2024(05): 889-898 .
    5. 彭宝山,王永乐,杨学孟. 特厚弱胶结顶板煤层综放开采覆岩破坏特征与强矿压机理. 煤炭技术. 2024(10): 75-80 .
    6. 孙斌杨,袁亮,张平松,吴荣新. 巨厚砾岩下采场覆岩运移与离层演化的光-电感知试验研究. 中国矿业大学学报. 2024(05): 977-992 .
    7. 于美鲁,王中文,刘瑜,李春元,李政岱,王鲁瑀. 不同松散层第四含水层水压条件下关键层破断力学机理研究. 采矿与岩层控制工程学报. 2024(05): 132-147 .
    8. 陈璐,余茜,罗容,周子龙,曾铃,郭一鹏. 柱式采空区矿柱失稳诱导边坡滑塌机制研究. 采矿与岩层控制工程学报. 2024(05): 148-163 .
    9. 杨华富,沈建廷. 基于数值模拟的厚煤层回采期间覆岩采动应力及能量变化研究. 陕西煤炭. 2024(12): 21-25 .
    10. 薛梦. 基于断裂带基岩地下3层车站施工技术研究. 建筑机械. 2024(12): 191-195 .
    11. 任连伟,李梁,王自强,邹友峰,顿志林,王树仁. 采空区场地高速铁路路基动力加载系统研发与模型试验. 煤炭学报. 2024(12): 4752-4767 .
    12. 肖江,张成,孙亚超. 大巷煤柱回收工作面覆岩破坏及应力演化规律研究. 煤炭技术. 2023(04): 10-14 .
    13. 徐刚,张春会,张震,刘晓刚,冯彦军,蔺星宇,马镕山,刘前进,李正杰. 综放工作面顶板灾害类型和发生机制及防治技术. 煤炭科学技术. 2023(02): 44-57 .
    14. 刘海洋,孟凡林,赵刚. 榆树泉煤矿厚硬顶板无煤柱自成巷卸压方案设计研究. 能源与环保. 2023(03): 286-292 .
    15. 张村,任赵鹏,兰世勇,方尚鑫,芦佳乐,乔元栋. 煤矿开采损伤数值模拟量化表征与应用. 矿业科学学报. 2023(03): 398-408 .
    16. 金宁平,付宝杰. 厚煤层分层采动直覆砂岩运移规律研究. 矿业研究与开发. 2023(05): 43-49 .
    17. 左建平,于美鲁,孙运江,吴根水. 不同厚度岩层破断模式转变机理及力学模型分析. 煤炭学报. 2023(04): 1449-1463 .
    18. 陆占金. 薄基岩厚松散层煤层覆岩导水断裂带发育高度研究. 矿业安全与环保. 2023(03): 105-110 .
    19. 刘元嘉. 综放工作面过集中煤柱矿压显现规律及控制技术. 能源与节能. 2023(11): 131-133 .
    20. 陈嘉,赵忠明,吴建帮. 采动覆岩“三带”移动变形及裂隙几何分形规律研究. 能源与环保. 2023(11): 36-43 .
    21. 李树刚,刘李东,赵鹏翔,林海飞,徐培耘,卓日升. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析. 煤炭科学技术. 2022(01): 95-104 .
    22. 索永录,白愿. 多年冻土层下煤层开采覆岩破断规律研究. 煤炭技术. 2022(03): 5-9 .
    23. 郭瑞,张勇,陈庆港. 动静载荷下深部开挖巷道围岩变形破坏特征及支护优化. 煤炭技术. 2022(12): 81-85 .
    24. 任建慧. 综放工作面过上覆集中煤柱矿压显现规律及控制技术研究. 中国煤炭. 2022(S1): 248-257 .
    25. 贾林刚. 软岩近距离煤层采动覆岩破坏特征模拟研究. 矿山测量. 2021(03): 1-6 .
    26. 王桂利,孙文杰,赵猛,马志峰,巩思园. 深部临空巨厚坚硬顶板断裂矿震规律及成因研究. 能源与环保. 2021(10): 300-305 .

    Other cited types(35)

Catalog

    Article views (340) PDF downloads (255) Cited by(61)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return