• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DAI Feng, ZHU Wan-cheng, LI Shao-hua, YU Yong-jun. Shape factor of irregular internal cracks in rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1039-1047. DOI: 10.11779/CJGE201806009
Citation: DAI Feng, ZHU Wan-cheng, LI Shao-hua, YU Yong-jun. Shape factor of irregular internal cracks in rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1039-1047. DOI: 10.11779/CJGE201806009

Shape factor of irregular internal cracks in rock-like materials

More Information
  • Received Date: March 13, 2017
  • Published Date: June 24, 2018
  • The initiation, propagation and coalescence of internal cracks will lead to the failure of rock mass. To study the fracture characteristics of the internal cracks in brittle rock mass, the validity and reliability of a cylinder FEM numerical model containing a horizontal circular crack with 1/4-point singular elements are verified by the similar material simulation tests. Then, to analyze the effects of the size and curvature on the fracture characteristics of internal cracks, the relative-size-ratio (n) and relative-curvature-radius-ratio (t) of crack are defined to describe the geometrical feature of the internal cracks. Furthermore, the influences of n and t on the shape factors of crack (Y) are examined by the numerical model with circular and elliptical internal horizontal cracks. In addition, based on the above research results, a simple formula is proposed to calculate the shape factor of arbitrary convex-curve-type internal horizontal crack. Moreover, the comparisons of the calculated results and the numerical simulations of circular, elliptical and irregular crack show that all the deviations are within 2%. Meanwhile, SIF of the irregular crack in this research approaches its maximum at positions of 60° and 300° from X-axis positive direction approximately, where the crack will develop firstly. The results can be applied to the estimation of SIF value of internal cracks in laboratory tests or practical engineering.
  • [1]
    蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.
    (CAI Mei-feng.Rock mechanics and engineering[M]. Beijing: Science Press, 2002. (in Chinese))
    [2]
    李廷春, 吕海波. 三轴压缩载荷作用下单裂隙扩展的CT实时扫描试验[J]. 岩石力学与工程学报, 2010, 29(2): 289-296.
    (LI Ting-chun, LÜ Hai-bo.CT real-time scanning tests on single crack propagation under tri-axial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 289-296.(in Chinese))
    [3]
    李术才, 杨磊, 李明田, 等. 三维内置裂隙倾角对类岩石材料拉伸力学性能和断裂特征的影响[J]. 岩石力学与工程学报, 2009, 28(2): 281-289.
    (LI Shu-cai, YANG Lei, LI Ming-tian, et al.Influences of 3D internal crack DIP angle on tensile mechanical properties and fracture features of rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 281-289. (in Chinese))
    [4]
    林恒星, 朱珍德, 王熙, 等. 透明类岩石内蕴裂纹扩展变形试验研究[J]. 科学技术与工程, 2014, 14(29): 280-284.
    (LIN Heng-xing, ZHU Zhen-de, WANG Xi, et al.Experimental studies on crack propagation and coalescence in transparent rock[J]. Science Technology and Engineering, 2014, 14(29): 280-284. (in Chinese))
    [5]
    林恒星, 朱珍德, 孙亚霖, 等. 透明类岩石预制裂隙不同赋存方式起裂扩展研究[J]. 固体力学学报, 2015, 36(增刊1): 58-62.
    (LIN Heng-xing, ZHU Zhen-de, SUN Ya-lin, et al.Experimental studies on pre-existing crack in different ways propagation and coalescence in transparent rock[J]. Chinese Journal of Solid Mechanics, 2015, 36(S1): 58-62. (in Chinese))
    [6]
    朱珍德, 林恒星, 孙亚霖. 透明类岩石内置三维裂纹扩展变形试验研究[J]. 岩土力学, 2016, 37(4): 914-920.
    (ZHU Zhen-de, LIN Heng-xing, SUN Ya-lin.An experimental study of internal 3D crack propagation and coalescence in transparent rock[J]. Rock and Soil Mechanics, 2016, 37(4): 914-920. (in Chinese))
    [7]
    戴峰, 魏明东, 徐奴文, 等. 内置三维裂隙非均匀性岩石渐进破坏数值研究[J]. 应用基础与工程科学学报, 2014, 22(6): 1178-1185.
    (DAI Feng, WEI Ming-dong, XU Nu-wen, et al.Numerical simulation on progressive failure of heterogeneous rock specimens with a pre-existing three-dimensional crack[J]. Journal of Basic Science and Engineering, 2014, 22(6): 1178-1185. (in Chinese))
    [8]
    于培师. 含曲线裂纹结构的三维断裂与疲劳裂纹扩展模拟研究[D]. 南京:南京航空航天大学, 2010.
    (YU Pei-shi.Studies on three-dimensional fracture and fatigue crack growth simulation of curve cracked structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese))
    [9]
    YU Pei-shi, GUO Wan-lin.An equivalent thickness conception for prediction of surface fatigue crack growth life and shape evolution[J]. Engineering Fracture Mechanics, 2012, 93: 65-74.
    [10]
    张敦福, 张波, 王卫东, 等. 单向轴压条件下内置椭圆三维裂纹扩展无网格方法的研究[J]. 应用力学学报, 2016, 33(3): 483-489.
    (ZHANG Dun-fu, ZHANG Bo, WANG Wei-dong, et al.Study on the built-in ellipse 3D crack propagation under uniaxial compression by meshless method[J]. Chinese Journal of Applied Mechanics, 2016, 33(3): 483-489. (in Chinese))
    [11]
    MORTEZA N, ADRIANA P, ROBERT W Z.On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics[J]. Engineering Fracture Mechanics, 2015, 144: 194-221.
    [12]
    ABDELAZIZ Y, BENKHEIRA S, RIKIOUI T, et al.A double degenerated finite element for modeling the crack tip singularity[J]. Applied Mathematical Modeling, 2010(34): 4031-4039.
    [13]
    刘明尧, 柯孟龙, 周祖德, 等. 裂纹尖端应力强度因子的有限元计算方法分析[J]. 武汉理工大学学报, 2011, 33(6): 116-121.
    (LIU Ming-yao, KE Meng-long, ZHOU Zu-de, et al.Analysis of finite element calculation methods for crack-tip stress intensity factor[J]. Journal of Wuhan University of Technology, 2011, 33(6): 116-121. (in Chinese))
    [14]
    谢仁海, 渠天祥, 钱光谟. 构造地质学[M]. 徐州:中国矿业大学出版社, 2007.
    (XIE Ren-hai, QU Tian-xiang, QIAN Guang-mo.Structural geology[M]. Xuzhou: China University of Mining and Technology Press, 2007. (in Chinese))
    [15]
    王宇, 李晓, 武艳芳, 等. 脆性岩石起裂应力水平与脆性指标关系探讨[J]. 岩石力学与工程学报, 2014, 33(2): 264-275.
    (WANG Yu, LI Xiao, WU Yan-fang, et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264-275. (in Chinese))
    [16]
    于永军, 梁卫国, 毕井龙, 等. 油页岩热物理特性试验与高温热破裂数值模拟研究[J]. 岩石力学与工程学报, 2015, 34(6): 1106-1115.
    (YU Yong-jun, LIANG Wei-guo, BI Jing-long, et al.Thermo physical experiment and numerical simulation on thermal cracking of oil shale at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1106-1115. (in Chinese))
    [17]
    朱锐, 邓乾金. 位移外推法在应力强度因子计算中的应用[J]. 机械工程与自动化, 2013(2): 190-191.
    (ZHU Rui, DENG Qian-jin.Application of displacement extrapolation method in calculation of SIF[J]. Mechanical Engineering and Automation, 2013(2): 190-191. (in Chinese))
    [18]
    王涛, 杨建国, 刘雪松, 等. 含中心裂纹低匹配对接接头形状参数对形状因子的影响[J]. 焊接学报, 2012, 33(1): 101-104.
    (WANG Tao, YANG Jian-guo, LIU Xue-song, et al.Influence of joint geometric parameters on shape factor of under-matched butt joint with center crack[J]. Transactions of The China Welding Institution, 2012, 33(1): 101-104. (in Chinese))
    [19]
    薛建阳, 董金爽, 尚鹏. 裂纹尖端附近应力场和位移场精确解分析[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(2): 160-164.
    (XUE Jian-yang, DONG Jin-Shuang, SHANG Peng.Analysis of exact solution on stress and displacement near the crack tip[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2016, 48(2): 160-164. (in Chinese))
    [20]
    中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1981.
    (China Research Institute of Aeronautics. Hand book of stress intensity factor[M]. Beijing: Science Press, 1981. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (299) PDF downloads (189) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return