• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MI Zhao-xu, WANG Fu-gang, SHI Na, YU Jing-zong, SUN Zhao-jun. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011
Citation: MI Zhao-xu, WANG Fu-gang, SHI Na, YU Jing-zong, SUN Zhao-jun. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011

Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone

More Information
  • Revised Date: March 15, 2017
  • Published Date: May 24, 2018
  • The variations of reservoir stress caused by the multi-stage and discontinuous nature of the process in the CO2 geological storage, leading to the change of permeability and pore structure of the rock, have a direct impact on CO2 injection and storage. Through laboratory experiments, variations in the permeability of sandstone in the Liujiagou formation of the Ordos CCS (CO2 capture and storage) demonstration project are analyzed under cyclic variations in injection pressure and confining pressure and multi-stage loading and unloading. In addition, the variations in the micro-pore structure are analyzed based on micro-pore structure tests. The main conclusions are as follows: (1) Both the confining pressure and the injection pressure have a significant effect on the permeability of the reservoir rock. And the influence degree can reach 30% and 80%, respectively. The relative permeability changes with pressure, and it between the loading and unloading stages is higher at low pressures than at high pressures. (2) Mathematical models of permeability as a function of confining pressure and injection pressure are constructed. The mathematical models representing different cyclical processes are quite different. (3) The effects of the interval between the experiments on permeability changes are different for different pressure modes. The rock permeability can recover better under the injection pressure variation than confining pressure variation. (4) The variations during multiple stress cycles have a significant effect on the micropore structure. The increase in micropores with mesopores at small widths and the decrease of macropores result in a decrease in the permeability of the rock samples.
  • [1]
    郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46. (GUO Jian-qiang, WEN Dong-guang, ZHANG Sen-qi, et al. Potential evaluation and demonstration project of co 2 geological storage in China[J]. Geological Survey China, 2015, 2(4): 36-46. (in Chinese))
    [2]
    王福刚, 孙兆军, 刘红艳, 等. 中-细粒长石石英砂岩低渗储层在围压循环增减条件下渗透率变化规律的试验研究[J]. 水利学报, 2016, 47(9): 1125-1132. (WANG Fu-gang, SUN Zhao-jun, LIU Hong-yan, et al. Experimental study on the variation of permeability of medium-fine feldspar-quartz sandstone low-permeability reservoir under the circulatory increasing or reducing conditions of confining pressure[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1125-1132. (in Chinese))
    [3]
    王建秀, 胡力绳, 叶 冲, 等. 复杂应力路径下大理岩三轴渗透试验研究[J]. 岩土力学, 2010, 31(8): 2389-2398. (WANG Jian-xiu, HU Li-sheng, YE Chong, et al. Triaxial permeability test of marble under complex stress path[J]. Rock and Soil Mechanics, 2010, 31(8): 2389-2398. (in Chinese))
    [4]
    AMANN‐Hildenbrand A, DIETRICHS J P, KROOSS B M. Effective gas permeability of Tight Gas Sandstones as a function of capillary pressure: a non-steady-state approach[J]. Geofluids, 2016, 16(3): 367-383.
    [5]
    FATT I, DAVIS D H. Reduction in permeability with overburden pressure[J]. Journal of Petroleum Technology, 1952, 4(12): 16-16.
    [6]
    武志德, 周宏伟, 丁靖洋, 等. 不同渗透压力下盐岩的渗透率测试研究[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3740-3746. (WU Zhi-de, ZHOU Hong-wei, DING Jing-yang, et al. Research on permeability testing of rock salt under different permeability pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3740-3746. (in Chinese))
    [7]
    VAIROGS J, HEARN C L, DAREING D W, et al. Effect of rock stress on gas production from low-permeability reservoirs[J]. Journal of Petroleum Technology, 1971, 23(9): 1161-1167.
    [8]
    薛向春, 闫彦东, 耿志远, 等. 低渗砂岩储层应力敏感性研究[J]. 辽宁化工, 2015(9): 1147-1149. (XUE Xiang-chun, YAN Yan-dong, GENG Zhi-yuan, et al. Study on stress sensitivity of low permeability sandstone reservoir[J]. Liaoning Chemical Industry, 2015(9): 1147-1149. (in Chinese))
    [9]
    彭苏萍, 孟召平, 王 虎, 等. 不同围压下砂岩孔渗规律试验研究[J]. 岩石力学与工程学报, 2003, 22(5): 742-746. (PENG Su-ping, MENG Zhao-ping, WANG Hu, et al. Testing study on pore ratio and permeability of sandstone under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 742-746. (in Chinese))
    [10]
    JENNINGS J B, CARROLL H B, RAIBLE C J. The relationship of permeability to confining pressure in low permeability rock[C]// SPE/DOE Low Permeability Gas Reservoirs Symposium. Society of Petroleum Engineers. Denver, 1981.
    [11]
    王环玲, 徐卫亚, 左 婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(2): 208-216. (WANG Huan-ling, XU Wei-ya, ZUO Jing, et al. Evolution law research on the permeability and porosity of low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 2015, 46(2): 208-216. (in Chinese))
    [12]
    兰 林, 康毅力, 陈一健, 等. 储层应力敏感性评价实验方法与评价指标探讨[J]. 钻井液与完井液, 2005, 22(3): 1-4. (LAN Lin, KANG Yi-li, CHEN Yi-jian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3): 1-4. (in Chinese))
    [13]
    孔 茜, 王环玲, 徐卫亚. 循环加卸载作用下砂岩孔隙度与渗透率演化规律试验研究[J]. 岩土工程学报, 2015, 37(10): 1893-1900. (KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. (in Chinese))
    [14]
    ZHANG Z, YANG Z. Theoretical and practical discussion of measurement accuracy for physisorption with micro-and mesoporous materials[J]. Chinese Journal of Catalysis, 2013, 34(10): 1797-1810.
    [15]
    孟智强, 郭和坤, 刘 强, 等. 塔里木盆地致密砂岩气储层微观孔隙结构[J]. 中南大学学报: 自然科学版, 2015, 46(8): 3032-3039. (MENG Zhi-qiang, GUO He-kun, LIU Qiang, et al. Microscopic pore structure for tight sandstone gas reservoirs in Tarim Basin[J]. Journal of Central South University (Science and Technology), 2015, 46(8): 3032-3039. (in Chinese))
    [16]
    杨 侃, 陆现彩, 徐金覃, 等. 气体吸附等温线法表征页岩孔隙结构的模型适用性初探[J]. 煤炭学报, 2013, 38(5): 817-821. (YANG Kan, LU Xian-cai, XU Jin-tan, et al. Preliminary verification of common calculation methods of pore size distribution of shale based on gas adsorption isotherm[J]. Journal of China Coal Society, 2013, 38(5): 817-821. (in Chinese))
    [17]
    THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [18]
    JAGIELLO J, THOMMES M. Comparison of DFT characterization methods based on N 2 , Ar, CO 2 , and H 2 adsorption applied to carbons with various pore size distributions[J]. Carbon, 2004, 42(7): 1227-1232.
    [19]
    杨 峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2): 301-311. (YANG Feng, NING Zheng-fu, HU Chang-peng, et al. Characterizatioin of microseopic pore struceures in shales reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311. (in Chinese))
    [20]
    胡科先, 王晓华. 各类储层孔隙度与渗透率关系研究[J]. 石油化工应用, 2014, 33(11): 40-42. (HU Ke-xian, WANG Xiao-hua. Experimental study of various types of reservoir porosity and permeability relationship[J]. Petrochemical Industry Application, 2014, 33(11): 40-42. (in Chinese))
  • Cited by

    Periodical cited type(7)

    1. 那金,谢康路,袁可涵,袁益龙. 应力加载对花岗岩粗糙裂隙渗透率影响规律. 地球科学. 2024(05): 1810-1820 .
    2. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
    3. 完颜祺琪,毛涛,王云,黄盛,李康,李早元,苏东华. 储气库固井水泥石渗透率演化规律. 断块油气田. 2024(05): 930-935 .
    4. 韩泽宇,王伟,牛庆合,杨金鹏,何卓冉. 裂隙粗砂岩渗透率的应力与时间效应研究. 石家庄铁道大学学报(自然科学版). 2023(04): 48-54 .
    5. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看
    6. 王俊光,孙清林,梁冰,余庆熔. 渗透压循环加卸载作用下页岩渗透率演化规律研究. 振动与冲击. 2021(07): 253-259 .
    7. 肖智勇,王长盛,王刚,蒋宇静,于俊红. 基质-裂隙相互作用对渗透率演化的影响:考虑基质变形和应力修正. 岩土工程学报. 2021(12): 2209-2219 . 本站查看

    Other cited types(10)

Catalog

    Article views (309) PDF downloads (165) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return