• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MI Zhao-xu, WANG Fu-gang, SHI Na, YU Jing-zong, SUN Zhao-jun. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011
Citation: MI Zhao-xu, WANG Fu-gang, SHI Na, YU Jing-zong, SUN Zhao-jun. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011

Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone

More Information
  • Revised Date: March 15, 2017
  • Published Date: May 24, 2018
  • The variations of reservoir stress caused by the multi-stage and discontinuous nature of the process in the CO2 geological storage, leading to the change of permeability and pore structure of the rock, have a direct impact on CO2 injection and storage. Through laboratory experiments, variations in the permeability of sandstone in the Liujiagou formation of the Ordos CCS (CO2 capture and storage) demonstration project are analyzed under cyclic variations in injection pressure and confining pressure and multi-stage loading and unloading. In addition, the variations in the micro-pore structure are analyzed based on micro-pore structure tests. The main conclusions are as follows: (1) Both the confining pressure and the injection pressure have a significant effect on the permeability of the reservoir rock. And the influence degree can reach 30% and 80%, respectively. The relative permeability changes with pressure, and it between the loading and unloading stages is higher at low pressures than at high pressures. (2) Mathematical models of permeability as a function of confining pressure and injection pressure are constructed. The mathematical models representing different cyclical processes are quite different. (3) The effects of the interval between the experiments on permeability changes are different for different pressure modes. The rock permeability can recover better under the injection pressure variation than confining pressure variation. (4) The variations during multiple stress cycles have a significant effect on the micropore structure. The increase in micropores with mesopores at small widths and the decrease of macropores result in a decrease in the permeability of the rock samples.
  • [1]
    郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46. (GUO Jian-qiang, WEN Dong-guang, ZHANG Sen-qi, et al. Potential evaluation and demonstration project of co 2 geological storage in China[J]. Geological Survey China, 2015, 2(4): 36-46. (in Chinese))
    [2]
    王福刚, 孙兆军, 刘红艳, 等. 中-细粒长石石英砂岩低渗储层在围压循环增减条件下渗透率变化规律的试验研究[J]. 水利学报, 2016, 47(9): 1125-1132. (WANG Fu-gang, SUN Zhao-jun, LIU Hong-yan, et al. Experimental study on the variation of permeability of medium-fine feldspar-quartz sandstone low-permeability reservoir under the circulatory increasing or reducing conditions of confining pressure[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1125-1132. (in Chinese))
    [3]
    王建秀, 胡力绳, 叶 冲, 等. 复杂应力路径下大理岩三轴渗透试验研究[J]. 岩土力学, 2010, 31(8): 2389-2398. (WANG Jian-xiu, HU Li-sheng, YE Chong, et al. Triaxial permeability test of marble under complex stress path[J]. Rock and Soil Mechanics, 2010, 31(8): 2389-2398. (in Chinese))
    [4]
    AMANN‐Hildenbrand A, DIETRICHS J P, KROOSS B M. Effective gas permeability of Tight Gas Sandstones as a function of capillary pressure: a non-steady-state approach[J]. Geofluids, 2016, 16(3): 367-383.
    [5]
    FATT I, DAVIS D H. Reduction in permeability with overburden pressure[J]. Journal of Petroleum Technology, 1952, 4(12): 16-16.
    [6]
    武志德, 周宏伟, 丁靖洋, 等. 不同渗透压力下盐岩的渗透率测试研究[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3740-3746. (WU Zhi-de, ZHOU Hong-wei, DING Jing-yang, et al. Research on permeability testing of rock salt under different permeability pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3740-3746. (in Chinese))
    [7]
    VAIROGS J, HEARN C L, DAREING D W, et al. Effect of rock stress on gas production from low-permeability reservoirs[J]. Journal of Petroleum Technology, 1971, 23(9): 1161-1167.
    [8]
    薛向春, 闫彦东, 耿志远, 等. 低渗砂岩储层应力敏感性研究[J]. 辽宁化工, 2015(9): 1147-1149. (XUE Xiang-chun, YAN Yan-dong, GENG Zhi-yuan, et al. Study on stress sensitivity of low permeability sandstone reservoir[J]. Liaoning Chemical Industry, 2015(9): 1147-1149. (in Chinese))
    [9]
    彭苏萍, 孟召平, 王 虎, 等. 不同围压下砂岩孔渗规律试验研究[J]. 岩石力学与工程学报, 2003, 22(5): 742-746. (PENG Su-ping, MENG Zhao-ping, WANG Hu, et al. Testing study on pore ratio and permeability of sandstone under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 742-746. (in Chinese))
    [10]
    JENNINGS J B, CARROLL H B, RAIBLE C J. The relationship of permeability to confining pressure in low permeability rock[C]// SPE/DOE Low Permeability Gas Reservoirs Symposium. Society of Petroleum Engineers. Denver, 1981.
    [11]
    王环玲, 徐卫亚, 左 婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(2): 208-216. (WANG Huan-ling, XU Wei-ya, ZUO Jing, et al. Evolution law research on the permeability and porosity of low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 2015, 46(2): 208-216. (in Chinese))
    [12]
    兰 林, 康毅力, 陈一健, 等. 储层应力敏感性评价实验方法与评价指标探讨[J]. 钻井液与完井液, 2005, 22(3): 1-4. (LAN Lin, KANG Yi-li, CHEN Yi-jian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3): 1-4. (in Chinese))
    [13]
    孔 茜, 王环玲, 徐卫亚. 循环加卸载作用下砂岩孔隙度与渗透率演化规律试验研究[J]. 岩土工程学报, 2015, 37(10): 1893-1900. (KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. (in Chinese))
    [14]
    ZHANG Z, YANG Z. Theoretical and practical discussion of measurement accuracy for physisorption with micro-and mesoporous materials[J]. Chinese Journal of Catalysis, 2013, 34(10): 1797-1810.
    [15]
    孟智强, 郭和坤, 刘 强, 等. 塔里木盆地致密砂岩气储层微观孔隙结构[J]. 中南大学学报: 自然科学版, 2015, 46(8): 3032-3039. (MENG Zhi-qiang, GUO He-kun, LIU Qiang, et al. Microscopic pore structure for tight sandstone gas reservoirs in Tarim Basin[J]. Journal of Central South University (Science and Technology), 2015, 46(8): 3032-3039. (in Chinese))
    [16]
    杨 侃, 陆现彩, 徐金覃, 等. 气体吸附等温线法表征页岩孔隙结构的模型适用性初探[J]. 煤炭学报, 2013, 38(5): 817-821. (YANG Kan, LU Xian-cai, XU Jin-tan, et al. Preliminary verification of common calculation methods of pore size distribution of shale based on gas adsorption isotherm[J]. Journal of China Coal Society, 2013, 38(5): 817-821. (in Chinese))
    [17]
    THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [18]
    JAGIELLO J, THOMMES M. Comparison of DFT characterization methods based on N 2 , Ar, CO 2 , and H 2 adsorption applied to carbons with various pore size distributions[J]. Carbon, 2004, 42(7): 1227-1232.
    [19]
    杨 峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2): 301-311. (YANG Feng, NING Zheng-fu, HU Chang-peng, et al. Characterizatioin of microseopic pore struceures in shales reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311. (in Chinese))
    [20]
    胡科先, 王晓华. 各类储层孔隙度与渗透率关系研究[J]. 石油化工应用, 2014, 33(11): 40-42. (HU Ke-xian, WANG Xiao-hua. Experimental study of various types of reservoir porosity and permeability relationship[J]. Petrochemical Industry Application, 2014, 33(11): 40-42. (in Chinese))
  • Related Articles

    [1]HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
    [2]The influence of sand pore structure on air migration during air injected desaturation process[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240890
    [3]WANG Wei, CHEN Chaowei, LIU Shifan, CAO Yajun, DUAN Xuelei, NIE Wenjun. Experimental study on permeability and effective porosity of anisotropic layered phyllite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 445-451. DOI: 10.11779/CJGE20230184
    [4]QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. DOI: 10.11779/CJGE20220112
    [5]LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032
    [6]LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
    [7]ZHANG Ning, ZHU Wei, MIN Fan-lu, XU Jing-bo. Microscopic pores of filter membranes and permeability during chamber opening under high pressure in slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 495-500. DOI: 10.11779/CJGE201703013
    [8]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
    [9]YAN Xiao-qing, FANG Ying-guang, ZHANG Ping. Experiment study on the effects of bentonite on the micropore structure characteristics of soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1302-1307.
    [10]Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708.
  • Cited by

    Periodical cited type(16)

    1. 蒋明杰,石竣允,栗书亚,胡荣峰,梅国雄. 级配对粗粒土-格栅界面循环剪切特性影响试验研究. 水利水电技术(中英文). 2024(03): 162-172 .
    2. 褚福永,朱俊高,许凯,翁厚洋. 基于连续级配方程的粗粒料压实密度缩尺效应试验研究. 水利水电科技进展. 2024(03): 34-38 .
    3. 谢康,陈晓斌,肖宪普,李泰灃,张千里,尧俊凯. 高速铁路路基填料智能振动压实系统研制与试验研究. 铁道学报. 2024(06): 138-147 .
    4. 赵桂锋,蒋明杰,张振,王天成,梅国雄. 粗粒土缩尺级配的渗透系数规律试验. 工程科学与技术. 2024(05): 240-246 .
    5. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 .
    6. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
    7. 谢康,陈晓斌,尧俊凯,蔡德钩. 高铁路基填料振动压实试验参数标准化方法与应用研究. 岩石力学与工程学报. 2023(07): 1799-1810 .
    8. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    9. 杨孝攀,李江,杨玉生,齐吉琳,李康达. 典型工程筑坝砂砾料级配特征与压实特性研究. 岩土力学. 2022(06): 1607-1616 .
    10. 梁传扬,吴跃东,刘坚,刘辉,陈大硕,林来贺. 钙质结核含量对钙质结核土压缩性缩尺效应影响研究. 岩土工程学报. 2022(12): 2272-2279 . 本站查看
    11. 罗奇志,袁朝阳,韩雪刚,罗彪. 土石混填体缩尺效应研究现状与发展趋势. 市政技术. 2021(08): 198-201 .
    12. 朱智勇,张丹瑜,寿平山,黄曼,朱申良,张益辉. 不同颗粒粒径的松散沉积物抗剪强度试验研究. 科技通报. 2021(12): 76-82 .
    13. 张村,赵毅鑫,屠世浩,张通. 采空区破碎煤岩样压实再次破碎特征的数值模拟研究. 岩土工程学报. 2020(04): 696-704 . 本站查看
    14. 吴二鲁,朱俊高,陈鸽,包孟碟,郭万里. 粗粒料的级配方程及其适用性研究(英文). Journal of Central South University. 2020(03): 911-919 .
    15. 崔家全,段军邦,马凌云,张路. 茨哈峡水电站砂砾石填筑料水平渗透变形特性试验研究. 西北水电. 2020(S2): 103-107 .
    16. 张村,赵毅鑫,屠世浩,郝宪杰,郝定溢,刘金保,任赵鹏. 颗粒粒径对采空区破碎煤体压实破碎特征影响机制. 煤炭学报. 2020(S2): 660-670 .

    Other cited types(12)

Catalog

    Article views (313) PDF downloads (165) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return