• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Qi, ZHU He-hua, HUANG Xian-bin, LI Xiao-jun, DAI Guo-liang. A new rock mass rating method based on Mamdani fuzzy inference for rock tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2116-2124. DOI: 10.11779/CJGE201711020
Citation: ZHANG Qi, ZHU He-hua, HUANG Xian-bin, LI Xiao-jun, DAI Guo-liang. A new rock mass rating method based on Mamdani fuzzy inference for rock tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2116-2124. DOI: 10.11779/CJGE201711020

A new rock mass rating method based on Mamdani fuzzy inference for rock tunnels

More Information
  • Received Date: February 09, 2017
  • Published Date: November 24, 2017
  • The rock mass rating (RMR14) method can evaluate the mechanical properties and structural conditions of rock mass comprehensively and consider the engineering factors such as the initial ground stress fields and excavation ways. RMR14 is quite suitable for evaluating the surrounding rock of mountaneous tunnels. But the ladder-like rating in RMR14 will cause the fuzzy uncertainty at the interval boundaries. In order to evaluate the quality of rock mass more accurately, the fuzzy membership functions are introduced to solve the problem of fuzzy uncertainty based on the Mamdani fuzzy inference method. A new RMR14 method based on the fuzzy inference is proposed by using the “if - then” reasoning rules to realize multiple input parameters and inference rules of the fuzzy inference. The new method is used to assess the qualities of the surrounding rock mass of Piaoli tunnel of Dushan-Pingtang highway. The results show that the new RMR14 based on the fuzzy inference can draw the existing engineering experience and appropriately solve the boundary problem of fuzzy uncertainty. Compared with the original RMR14, the new RMR14 based on the fuzzy inference can assess the quality of the surrounding rock more accurately and steadily.
  • [1]
    郑颖人, 朱合华, 方正昌, 等. 地下工程围岩稳定分析与设计理论[M]. 北京: 人民交通出版社, 2012. (ZHENG Ying-ren, ZHU He-hua, FANG Zheng-chang, et al. The stability analysis and design theory of surrounding rock of underground engineering[M]. Beijing: China Communications Press, 2012. (in Chinese))
    [2]
    王思敬, 杨志法, 刘竹华. 地下工程岩体稳定分析[M]. 北京: 科学出版社, 1984. (WANG Si-jing, YANG Zhi-fa, LIU Zhu-hua. Stability analysis of rock mass for underground engineering[M]. Beijing: Science Press, 1984. (in Chinese))
    [3]
    BIENIAWSKI T Z. Engineering classification of jointed rock masses[J]. Civil Engineer in South Africa, 1973, 15(12): 335-343.
    [4]
    HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186.
    [5]
    SONMEZ H, ULUSAY R. Modifications to the geological strength index (GSI) and their applicability to stability of slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 743-760.
    [6]
    BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics and Rock Engineering, 1974, 6(4): 189-236.
    [7]
    GB/T 50218—2014工程岩体分级标准[S]. 2014. (GB/T 50218—2014 Standard for engineering classification of rock masses[S]. 2014. (in Chinese))
    [8]
    喻 勇, 尹健民, 杨火平, 等. 岩体分级方法在水布垭地下厂房工程中的应用[J]. 岩石力学与工程学报, 2004, 23(10): 1706-1709. (YU Yong, YIN Jian-min, YANG Huo-ping, et al. Rock mass classification for underground power houses of Shuibuya project[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10): 1706-1709. (in Chinese))
    [9]
    孙金山, 卢文波, 苏利军, 等. 基于TBM掘进参数和渣料特征的岩体质量指标辨识[J]. 岩土工程学报, 2008, 30(12): 1847-1854. (SUN Jin-shan, LU Wen-bo, SU Li-jun, et al. Rock mass rating identification based on TBM performance parameters and muck characteristics[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1847-1854. (in Chinese))
    [10]
    冯兴隆, 王李管, 毕 林. 矿体可崩性区域化评价模型研究[J]. 岩土工程学报, 2009, 31(4): 584-588. (FENG Xing-long, WANG Li-guan, BI Lin. Compartmentation cavability evaluation model of ore body[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 584-588. (in Chinese))
    [11]
    曹 平, 张 科, 万琳辉, 等. 金川矿山深部采掘条件下岩石力学研究与实践[J]. 岩石力学与工程学报, 2012, 31(7): 1334-1341. (CAO Ping, ZHANG Ke, WAN Lin-hui, et al. Study and practice of rock mechanics in Jinchuan mine under deep exploitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1334-1341. (in Chinese))
    [12]
    CELADA B, TARDÁGUILA I, BIENIAWSKI Z T. Innovating tunnel design by an improved experience-based RMR system[C]// Proceedings of the World Tunnel Congress 2014. Foz do Iguaçu, 2014.
    [13]
    KANIK M, GUROCAK Z, ALEMDAG S. A comparison of support systems obtained from the RMR89 and RMR14 by numerical analyses: Macka Tunnel project, NE Turkey[J]. Journal of African Earth Sciences, 2015, 109: 224-238.
    [14]
    陶振宇, 彭祖赠. 模糊数学在岩石工程分类中的应用[J]. 岩土工程学报, 1981, 3(1): 36-45. (TAO Zhen-yu, PENG Zu-zeng. Application of fuzzy mathematics to the engineering classification of rocks[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(1): 36-45. (in Chinese))
    [15]
    王广军, 苏经宇. 场地类别的模糊综合评判[J]. 地震工程与工程振动, 1985, 2: 28-42. (WANG Guang-jun, SU Jing-yu. Fuzzy synthetic evaluation of site classification[J]. Earthquake Engineering and Engineering Vibration, 1985, 2: 28-42. (in Chinese))
    [16]
    王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报, 1998, 17(5): 493-501. (WANG Yuan-han, LI Wo-dong, LI Qi-guang, et al. Method of fuzzy comprehensive evaluations for rock burst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 493-501. (in Chinese))
    [17]
    祁生文, 伍法权. 基于模糊数学的TBM施工岩体质量分级研究[J]. 岩石力学与工程学报, 2011, 30(6): 1225-1229. (QI Sheng-wen, WU Fa-quan. Surrounding rockmass quality classification of tunnel cut by TBM with fuzzy mathematics method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1225-1229. (in Chinese))
    [18]
    MAMDANI E H, ASSILIAN S. An experiment in linguistic synthesis with a fuzzy logic controller[J]. International Journal of Human-Computer Studies, 1999, 51(2): 135-147.
    [19]
    LOWSON A R, BIENIAWSKI Z T. Critical assessment of RMR based tunnel design practices: a practical engineer’s approach[C]// Rapid Excavation and Tunneling Conference 2013. Washington D C, 2013.
    [20]
    HAMIDI J K, SHAHRIAR K, REZAI B, et al. Application of fuzzy set theory to rock engineering classification systems: an illustration of the rock mass excavability index[J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 335-350.
    [21]
    BERKAN R C, TRUBATCH S L. Fuzzy system design principles: building fuzzy if-then rule bases[M]. New York: The Institute of Electrical and Electronics Engineers, 1997.
    [22]
    同济大学. 独平高速隧道掌子面节理特征精细化描述及优势节理面[R]. 上海: 同济大学, 2013. (Tongji University. Duping high speed Fine description of tunnel face joint characteristics and dominant joint surfaces[R]. Shanghai: Tongji University, 2013. (in Chinese))
    [23]
    许宏发, 陈 锋, 王 斌, 等. 岩体分级BQ与RMR的关系及其力学参数估计[J]. 岩土工程学报, 2014, 36(1): 195-198. (XU Hong-fa, CHEN Feng, WANG Bin, et al. Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 195-198. (in Chinese))
  • Related Articles

    [1]CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
    [2]HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng. Particle breakage of rockfill materials under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1753-1760. DOI: 10.11779/CJGE201710001
    [3]CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
    [4]HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038
    [5]CAI Zheng-yin, LI Xiao-mei, HAN Lin, GUAN Yun-fei. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. DOI: 10.11779/CJGE201608001
    [6]CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019
    [7]LIU Si-hong, HUANG Ming-kun, WANG Zi-jian, KONG Wei-yao, XIE Hao, WANG Yi-shu. Simple shear tests on breakable rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1503-1508. DOI: 10.11779/CJGE201508021
    [8]CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
    [9]CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, PENG Cheng. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495.
    [10]KONG Dezhi, ZHANG Bingyin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469.
  • Cited by

    Periodical cited type(25)

    1. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
    2. 王钰轲,陈浩,宋迎宾,王振海,钟燕辉,张蓓. 大豆脲酶诱导碳酸钙固化黄河泥沙水稳定性试验研究. 水利学报. 2024(01): 71-79 .
    3. 亓永帅,高玉峰,何稼,周云东,严柏杨. 可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究. 岩土工程学报. 2024(04): 823-832 . 本站查看
    4. 倪静,韩晓婷,贺青青,耿雪玉. 黄原胶-粉煤灰联合处理酸污染土试验研究. 长江科学院院报. 2024(04): 111-118 .
    5. 王欢,张佳伟,郭合家. EICP改良膨胀土的物理力学性质试验研究. 土木与环境工程学报(中英文). 2024(05): 109-116 .
    6. 董旭光,方礼鑫,马渊博,胡倩倩,李瑞瑞. 大豆脲酶诱导碳酸钙固化黄土的强度试验研究. 地震工程学报. 2024(05): 1009-1020 .
    7. 褚文杰,李驰,武慧敏,高瑜. 土豆脲酶提取及基于酶诱导碳酸钙沉淀技术对风积沙改良的方法. 土木与环境工程学报(中英文). 2023(02): 74-80 .
    8. 吕家栋,赵立财. 黄原胶改善黏土断裂性能研究. 人民长江. 2023(04): 205-210+217 .
    9. 任廷婕,袁立敏,高永,王春颖,徐艳艳. 环保型固沙材料的研究进展. 中国沙漠. 2023(03): 160-168 .
    10. 张建伟,李想,石磊,尹悦. 废弃口罩对EICP固化砂土力学特性的影响. 河南大学学报(自然科学版). 2023(03): 359-366 .
    11. 陆爱灵,朱东云,张宏,曹函,张婧. EICP联合生物炭固化修复重金属污染土试验. 环境工程. 2023(08): 176-180 .
    12. 袁嘉茂,高永,李婉娇,任怀新,吴振亮. 生物诱导碳酸钙土体固化技术在防沙领域研究进展. 广东水利水电. 2023(09): 75-80 .
    13. 王灏喆,武钢义,代育恒,黄灿,常少华. 基于响应面法的EICP-PVA固化粉砂土优化试验研究. 公路. 2023(11): 264-272 .
    14. 赵轩,刘光宇,胡天林,赵璧,吕刚锋. EICP固化砂土强度特性试验研究. 水利与建筑工程学报. 2023(06): 114-121 .
    15. 刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 .
    16. 徐银龙,郑文杰,王琳,薛中飞,谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究. 化工学报. 2022(05): 2222-2232 .
    17. 曹光辉,刘士雨,蔡燕燕,俞缙,孙志龙. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究. 岩土力学. 2022(08): 2241-2252 .
    18. 郑文杰,胡文乐,袁可,文少杰. 脲酶矿化作用机制及其提升仿古黏土砖瓦阻水性能研究. 岩土力学. 2022(S2): 255-264 .
    19. 范广才,缪林昌,孙潇昊,王恒星,吴林玉. 脲酶抑制剂对EICP防风固沙效果的影响研究. 防灾减灾工程学报. 2022(05): 1019-1027 .
    20. 原华,刘帅星,刘康. EICP联合Na-Mt固化粉砂抗剪特性. 中国科技论文. 2022(12): 1358-1362+1375 .
    21. 王磊,王博,刘志强,常新昊. 基于脲酶诱导碳酸钙沉淀的土体固化研究进展. 工业建筑. 2022(11): 57-66 .
    22. 原华,刘康,原耀楠,冯佳星. 大豆脲酶诱导碳酸钙沉淀的多因素影响分析. 人工晶体学报. 2021(02): 375-380 .
    23. 何想,刘汉龙,韩飞,马国梁,赵常,楚剑,肖杨. 微生物矿化沉积时空演化的微流控芯片试验研究. 岩土工程学报. 2021(10): 1861-1869 . 本站查看
    24. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 .
    25. 何稼,吴敏,孟浩,亓永帅,高玉峰. 生物固土用于防风固沙的研究进展. 高校地质学报. 2021(06): 687-696 .

    Other cited types(23)

Catalog

    Article views (370) PDF downloads (250) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return