• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Yong, YAO Zhi-gang, FU Ya-peng, XU Chen. Model tests on loading characteristics of linings in overlying horizontal coal mined-out area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1513-1521. DOI: 10.11779/CJGE201608020
Citation: FANG Yong, YAO Zhi-gang, FU Ya-peng, XU Chen. Model tests on loading characteristics of linings in overlying horizontal coal mined-out area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1513-1521. DOI: 10.11779/CJGE201608020

Model tests on loading characteristics of linings in overlying horizontal coal mined-out area

More Information
  • Published Date: August 24, 2016
  • The tunnel construction adjacent to the overlying mined-out area is easy to expand the rapping range of the overlying rock and to increase the loose load. In order to study the characteristics of lining structures under loads in overlying horizontal thin coal mined-out area, indoor scaled model tests are carried out to measure contact force between tunnel lining and surrounding rock and structural internal force of the secondary lining (axial force and bending moment) in the strata thin seam mined-out area. The variations of displacement, axial force and bending moment under different pressures and the influences of pitch under confining pressure on the earth pressure and internal forces of the secondary lining are analyzed. The results show that the overlying mined-out area has a certain effect on convergence displacement of tunnel. The smaller the distance, the greater the displacement and the more obvious the increase of bending moment and axial force. The internal force of the secondary lining is discretely distributed, the maximum eccentricity distance appears in the invert site and the bearing capacity has a certain degree of reduction, so it is the weak part of the main structure of the tunnel. The first crack appears in the inverted arch of the secondary lining, and the overlying mined-out area has remarkable influence on the order of cracks.
  • [1]
    谢晓东, 张显伟, 李之利. 煤层采空区对铁山隧道病害区的影响[J]. 中国煤田地质, 2000, 12(4): 44-47. (XIE Xiao-dong, ZHANG Xian-wei, LI Zhi-li. Influence of coal mined-out area on disaster zones in tieshan tunnel[J]. Coal Geology of China, 2000, 12(4): 44-47. (in Chinese))
    [2]
    李治国, 曹桢楹. 铁山隧道病害治理技术[J]. 铁道工程学报, 2000(1): 77-81. (LI Zhi-guo, CAO Zhen-ying. Techniques for treatment of disasters in tieshan tunnel[J]. Journal of Railway Engineering Society, 2000(1): 77-81. (in Chinese))
    [3]
    李晓红, 姜德义, 刘 春, 等. 公路隧道穿越采空区治理技术研究[J]. 岩土力学, 2005, 26(6): 910-914. (LI Xiao-hong, JIANG De-yi, LIU Chun, et al. Study on treatment technology of highway tunnel through working out area[J]. Rock and Soil Mechanics, 2005, 26(6): 910-914. (in Chinese))
    [4]
    叶 飞, 霍三胜, 常文伟. 公路隧道穿越软弱破碎煤系地层及采空区施工安全控制技术[J]. 公路, 2011(6): 199-205. (YE Fei, HUO San-sheng, CHANG Wen-wei. Construction safety control technology in highway tunnel traversing soft and weak coal formation and mined-out area[J]. Highway, 2011(6): 199-205. (in Chinese))
    [5]
    秦国刚. 隧道穿越顶部既有富水空区的综合施工技术[J]. 水利与建筑工程学报, 2008, 6(1): 30-33. (QIN Guo-gang. Comprehensive construction technique for tunnel passing through already-existing depletion region being rich in water[J]. Journal of Water Resources and Architectural Engineering, 2008, 6(1): 30-33. (in Chinese))
    [6]
    李治国. 铁山隧道采空区稳定性分析及治理技术研究[J]. 岩石力学与工程学报, 2002, 21(8): 1168-1173. (LI Zhi-guo. Stability analysis and reinforcement technology of mined-out area in Tieshan tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(8): 1168-1173. (in Chinese))
    [7]
    杨 斌. 单煤层采空区公路隧道施工力学行为研究[D]. 成都: 西南交通大学, 2014. (YANG Bin. Study on construction mechanical behavior of highway tunnel traversing single coal seam mined-out area stratum[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese))
    [8]
    赵 晨. 采空区下隧道安全稳定性评价及数值模拟分析[D]. 太原: 太原理工大学, 2011. (ZHAO Chen. Numerical simulation analysis and stability evaluation of tunnel surrounding rock under mined-out areas[D]. Taiyuan: Taiyuan University of Technology, 2011. (in Chinese))
    [9]
    FU Y P, FANG Y, CUI G, et al. Influence of overlying goaf dip angle on stability of highway tunnel during excavation[C]// IACGE2013, ASCE. Chengdu, 2013: 507-514.
    [10]
    廖沛源, 郑国强, 袁 松. 采空区地层变形产生的隧道附加荷载及变形容许值计算与分析[J]. 现代隧道技术, 2013, 50(3): 72-78. (LIAO Pei-yuan, ZHENG Guo-qiang, YUAN Song. Calculation and analysis of the additional load upon tunnels caused by stratum deformation and allowable deformation values in mined-out areas[J]. Modern Tunnelling Technology, 2013, 50(3): 72-78. (in Chinese))
    [11]
    方 勇, 符亚鹏, 杨志浩, 等. 公路隧道下穿煤层采空区开挖过程相似模型试验[J]. 土木工程学报, 2015, 48(2): 125-134. (FANG Yong, FU Ya-peng, YANG Zhi-hao, et al. Similarity model test of highway tunnel excavation underlying coal mined-out area[J]. China Civil Engineering Journal, 2015, 48(2): 125-134. (in Chinese))
    [12]
    方 勇, 符亚鹏, 周超月, 等. 公路隧道下穿双层采空区开挖过程模型试验[J]. 岩石力学与工程学报, 2014, 33(11): 2247-2257. (FANG Yong, FU Ya-peng, ZHOU Chao-yue, et al. Model test of highway tunnel construction underlying double-deck mined-out area[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2247-2257. (in Chinese))
    [13]
    崔 戈, 方 勇, 徐 晨, 等. 公路隧道下穿3层采空区施工模型试验研究[J]. 岩土力学, 2014, 35(增刊2): 257-266. (CUI Ge, FANG Yong, XU Chen, et al. Model test of highway tunnel construction underlying triple-decker mined-out area[J]. Rock and Soil Mechanics, 2014, 35(S2): 257-266. (in Chinese))
    [14]
    杨俊杰. 相似理论与结构模型试验[M]. 武汉: 武汉理工大学出版社, 2005: 5-11. (YANG Jun-jie. Similarity theory and structure model test[M]. Wuhan: Wuhan University of Technology Press, 2005: 5-11. (in Chinese))
    [15]
    JTG/T D31—03—2011 采空区公路设计与施工技术细则[S]. 2011. (JTG/T D31—03—2011 Guidelines for design and construction of highway engineering in the mined-out area[S]. 2011. (in Chinese))
  • Related Articles

    [1]QU Shizhang, LIU Xiaoming, LI Li, CHEN Renpeng. Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543
    [2]SHAO Long-tan, WEN Tian-de, GUO Xiao-xia. Direct measurement method and prediction formula for permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 806-812. DOI: 10.11779/CJGE201905002
    [3]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [4]CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
    [5]NI Sha-sha, CHI Shi-chun. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 727-734. DOI: 10.11779/CJGE201704019
    [6]WU Meng-xi, CHENG Peng-da, FAN Fu-ping, LI Xiao-bin. Test apparatus and method for field measurement of surface permeability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 184-189. DOI: 10.11779/CJGE2016S2030
    [7]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [8]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [9]Analytical solution for consolidation of sand-drained ground under non-uniform distribution of initial excess pore water pressure and variation of permeability coefficient in smear zone[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [10]LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510.

Catalog

    Article views (339) PDF downloads (226) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return