Citation: | LU Gao-ming, LI Yuan-hui, HASSANI Ferri. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506. DOI: 10.11779/CJGE201608018 |
[1] |
徐小荷. 试论采矿工程的新学科——岩石破碎学[J]. 有色金属(矿山部分), 1980(6): 39-42. (XU Xiao-he. On the new subject of mining engineering-rock fragmentation[J]. Nonferrous Metals (Mining Section), 1980(6): 39-42. (in Chinese))
|
[2] |
徐小荷, 余 静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984. (XU Xiao-he, YU Jing. Rock fragmentation[M]. Beijing: Coal Industry Press, 1984. (in Chinese))
|
[3] |
周子龙, 李夕兵, 刘希灵. 深部岩石破碎方法[J]. 矿山压力与顶板管理, 2005(3): 63-65. (ZHOU Zi-long, LI Xi-bing, LIU Xi-ling. Rock fragmentation method in deep level[J]. Ground Pressure and Strata Control, 2005(3): 63-65. (in Chinese))
|
[4] |
李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望[C]// 2009—2010岩石力学与岩石工程学科发展报告. 北京, 2010: 142-149. (LI Xi-bing, ZHOU Zi-long, WANG Wei-hua. The status and prospect of development in rock fargmentation engineering [C]// Report on the Development of Rock Mechanics and Rock Engineering Discipline in 2009-2010. Beijing, 2010: 142-149. (in Chinese))
|
[5] |
潘井澜. 爆破破岩机理的探讨[J]. 爆破, 1994(4): 1-6. (PAN Jing-lan. The discussion of rock mechanism by blasting[J]. Blasting, 1994(4): 1-6. (in Chinese))
|
[6] |
余 静. 岩石机械破碎规律和破岩机理模型[J]. 煤炭学报, 1982, 7(3): 10-18. (YU Jing. Rulesofrockfragmentation withmechanicalmethodsandmodelofrockfailuremechanism[J].Journal of China Coal Society, 1982, 7(3): 10-18. (in Chinese))
|
[7] |
刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望[J]. 中国钨业, 2011, 26(1): 15-19. (LIU Baidu-lu, PAN Jian-zhong, XIE Shi-yong. On the research development of rock fragmentation and its prospect[J]. China Tungsten Industry, 2011, 26(1): 15-19. (in Chinese))
|
[8] |
戴 俊, 孟 振, 吴丙权.微波照射对岩石强度的影响研究[J]. 有色金属(选矿部分), 2014(3): 54-57. (DAI Jun, MENG Zhen, WU Bing-quan. Study on impact of rock strength by microwave irradiation[J]. Nonferrous Metals (Mining section), 2014(3): 54-57. (in Chinese))
|
[9] |
OSEPCHUK J M. A history of microwave heating Applications[J]. IEEE Trans on Microwave Theory and Techniques, 1984, 32(9): 1200-1224.
|
[10] |
CHEN T T, DUTRIZAC J E, HAQUE K E, et al. Relative transparency of minerals to microwave radiation[J]. Canadian Metallurgical Quarterly, 1984, 23(3): 349-351.
|
[11] |
WALKIEWICZ J W, KAZONICH G, MCGILL S L. Microwave heating characteristics of selected minerals and compounds[J]. Minerals and Metallurgical Processing, 1988, 39(1): 39-42.
|
[12] |
WALKIEWICZ J W, LINDROTH D P, MCGILL S L. Microwave assisted grinding[J]. IEEE Transactions on Industrial Applications, 1991, 27(2): 239-242.
|
[13] |
KINGMAN S W, JACKSON K, BRADSHAW S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution[J]. Powder Technology, 2004, 146(3): 176-184.
|
[14] |
KINGMAN S W, ROWSON N A. Microwave treatment of minerals—a review[J]. Minerals Engineering, 1998, 11(11): 1081-1087.
|
[15] |
KINGMAN S W, VORSTER W, ROWSON N A. The influence of mineralogy on microwave assisted grinding[J]. Minerals Engineering, 2000, 13(3): 313-327.
|
[16] |
KINGMAN S W, JACKSON K, CUMBANE A, et al. Recent developments in microwave-assisted comminution[J]. International Journal of Mineral Processing, 2004, 74(1): 71-83.
|
[17] |
KINGMAN S W, CORFIELF G M, ROWSON N A. Effects of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore[J]. Magnetic and Electrical Separation, 1998, 9: 131-148.
|
[18] |
VORSTER W, ROWSON N A, KINGMAN S W. The effect of microwave radiation upon the processing of Neves Corvo copper ore[J]. International Journal of Mineral Processing, 2001, 63(1): 29-44.
|
[19] |
WHITTLES D N, KINGMAN S W, REDDISH D J. Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage[J]. International Journal of Mineral Processing, 2003, 68(1): 71-91.
|
[20] |
JONES D A, KINGMAN S W, WHITTLES D N, et al. Understanding microwave assisted breakage[J]. Minerals Engineering, 2005, 18(7): 659-669.
|
[21] |
JONES D A, KINGMAN S W, WHITTLES D N, et al. The influence of microwave energy delivery method on strength reduction in ore samples[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(4): 291-299.
|
[22] |
JOHN R S, BATCHELOR A R, IVANOV D, et al. Understanding microwave induced sorting of porphyry copper ores[J]. Minerals Engineering, 2015, 84: 77-87.
|
[23] |
MONTI T, TSELEV A, UDOUDO O, et al. High-resolution dielectric characterization of minerals: A step towards understanding the basic interactions between microwaves and rocks[J]. International Journal of Mineral Processing, 2016, 151: 8-21.
|
[24] |
HASSANI F, NEKOOVAGHT P M, RADZISZEWSKI P, et al. Microwave assisted mechanical rock breaking[C]// Proceedings of the 12th ISRM International Congress on Rock Mechanics. Beijing, 2011: 2075-2080.
|
[25] |
HASSANI F, NEKOOVAGHT P M. The development of microwave assisted machineries to break hard rocks[C]// Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC). Seoul, 2011: 678-684.
|
[26] |
HASSANI F, OUELLET J, RADZISZEWSKI P, et al. Exploring microwave assisted drilling[C]//Planetary and Terrestrial Mining Sciences Symposium (PTMSS). Montreal, 2007.
|
[27] |
HASSANI F, OUELLET J, RADZISZEWSKI P, et al. Microwave assisted drilling and its influence on rock breakage[C]// International symposium of rock mechanics, Proceedings of 5th Asian Rock Mechanics Symposium, ISRM-Sponsored International Symposium. 2008: 87-104.
|
[28] |
HASSANI F, NEKOOVAGHT P M. The use of microwave to contribute to breakage of rocks[C]//2nd South American Symposium on Rock Excavations. San José, 2012.
|
[29] |
HASSANIF, NEKOOVAGHT P M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1-15.
|
[30] |
SATISH H, OUELLET J, RAGHAVAN V, et al. Investigating microwave assisted rock breakage for possible space mining applications[J]. Mining Technology, 2006, 115(1): 34-40.
|
[31] |
NEKOOVAGHT P M, GHARIB N, HASSANI F. Numerical simulation and experimental investigation of the influence of 2.45 GHz microwave radiation on hard rock surface[C]//8th Asian Rock Mechanics Symposium. Sapporo, 2014.
|
[32] |
NEKOOVAGHT P M, GHARIB N, HASSANI F. Microwave assistance positive influence on rock breakage in space mining applications[C]//65th International Astronautical Congress, International Astronautical Federation. Toronto, 2014: 1-7.
|
[33] |
NEKOOVAGHT P M, HASSANI F. The influence of microwave radiation on hard rocks as in microwave assisted rock breakage applications[C]// The ISRM European rock mechanics Symposium. Vigo, 2014.
|
[34] |
HARTLIEB P, TOIFL M, KUCHAR F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution[J]. Minerals Engineering, 2016, 91: 34-41.
|
[35] |
HARTLIEB P. LEINDL M, KUCHAR F, et al. Damage of basalt induced by microwave irradiation[J]. Minerals Engineering, 2012, 31: 82-89.
|
[36] |
PEINSITT T, KUCHAR F, HARTLIEB P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18-29.
|
[37] |
MEISELS R, TOIFL M, HARTLIEB P, et al. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks[J]. International Journal of Mineral Processing, 2015, 135: 40-51.
|
[38] |
TOIFL M, MEISELS R, HARTLIEB P, et al. 3D numerical study on microwave induced stresses in inhomogeneous hard rocks[J]. Minerals Engineering, 2016, 90: 29-42. (in press)
|
[39] |
GWAREK W K, CELUCH-MARCYSIAK M. A review of microwave power applications in industry and research[C]// International Conference on Microwaves, Radar and Wireless Communications. Warszawa, 2004: 843-848.
|
[40] |
CLARK D E, SUTTON W H. Microwave processing of materials[J]. Annual Review of Materials Science, 1996, 26(1): 299-331.
|
[41] |
SAXENAA K. Electromagnetic theory and applications[M]. Oxford, UK: Alpha Science International, 2009.
|
[42] |
HARRISON P C. Microwave processing of minerals and ores[D]. Birmingham: University of Birmingham, 1997.
|
[43] |
CLARK S P. Handbook of physical constants[M]. Geological Society of America. Boulder, 1966.
|
[44] |
WILKINSON M A, Tester J W. Experimental measurement of surface temperatures during flame-jet induced thermal spallation[J]. International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts, 1993, 26(1): 29-62.
|
[45] |
LINDROTH D P, BERGLUND W R, Morrell R. J., et al. Microwave-assisted drilling in hard rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 44(8): 1159-1163.
|
[46] |
ENTACHER M, LORENZ S, GALLER R. Tunnel boring machine performance prediction with scaled rock cutting tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 450-459.
|
[47] |
GONG Q M, ZHAO J. Development of a rock mass characteristics model for TBM penetration rate prediction[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 8-18.
|
[48] |
JAIN P, NAITHANIA K, SINGH T N. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps-A case study[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1): 36-47.
|
[49] |
WIJK G. A model of tunnel boring machine performance[J]. Geotechnical & Geological Engineering, 1992, 10(1): 19-40.
|