• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Shun-ji, LI Jun, LIU Gong-hui. Mechanism of cryogenic rock failure in gas drilling[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1466-1472. DOI: 10.11779/CJGE201608014
Citation: YANG Shun-ji, LI Jun, LIU Gong-hui. Mechanism of cryogenic rock failure in gas drilling[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1466-1472. DOI: 10.11779/CJGE201608014

Mechanism of cryogenic rock failure in gas drilling

More Information
  • Received Date: July 12, 2015
  • Published Date: August 24, 2016
  • The factors contributing to high penetration rate of gas drilling are complex. The isentropic flow is generated when gas passes through bit nozzle during gas drilling. This phenomenon will lead to cryogenic effects, and then the resulted thermal shock stress at bottom hole rock will reduce the rock strength, contributing to the role of the rock failure. First, a model for the temperature distribution of bottom hole rock under asymmetric cooling is established. The three-dimensional dynamic thermal shock stress distribution model is established based on the temperature field. Then, the change of the rock cohesion is analyzed by using the Mohr-Coulomb criterion. The results demonstrate that as the temperature decreases, the strength of rock is greatly reduced, resulting in increased ROP. Finally the liquid nitrogen cooling tests and real-time measurements of acoustic waves are conducted to verify the above theory. The first wave amplitude has a dramatic delay, which illustrates that the cooling has an important impact on the internal structure of rock. The mechanism of rock failure under dynamic low temperature in gas drilling is clearly depicted.
  • [1]
    ANGEL R. Volume requirements for air or gas drilling[J]. Transaction of American Istitute of Mining, Metallurgical, and Petroleum Engineers, 1957, 210: 325-330.
    [2]
    CHEN G, CHEN X. The application of air and air/foam drilling technology in tabnak gas field, southern iran[C]// Social of Petroleum Engineer 101560, 2006.
    [3]
    GAS RESEARCH INSTITUTE. Underbalanced Drilling manual[M]. GRI Reference, 1997.
    [4]
    GUO B, GHALAMBOR A, XU C. A systematic approach to predicting liquid loading in gas wells[J]. SPE Production & Facilities Journal, 2006, 21: 81-88.
    [5]
    GUO B, MISKA S, LEE R. Volume requirements for directional air drilling[C]// Social of Petroleum Engineering 27510. 1994.
    [6]
    ZHU H, MENG Y. Influence of relevant parameters on hole cleaning and pipe string erosion in air drilling[C]// Social of Petroleum Engineering 126515. 2010.
    [7]
    LI J, LIU G H, GUO B Y. Pilot test shows promising technology for gas drilling[J]. Journal Petroleum Technology, 2012, 7: 32-37.
    [8]
    YANG S J, LIU G H, LI J. The characteristics of recycling gas drilling technology[J]. Petroleum Science, 2012, 1: 59-65.
    [9]
    YANG S J, LIU G H, LI J. Distribution of the sizes of rock cuttings in gas drilling at various depths[J]. Computer Modeling in Engineering & Science, 2012, 89(2): 79-96.
    [10]
    LI J, YANG S J, LIU G H. Cutting breakage and transportation mechanism of air drilling[J]. International Journal of Oil, Gas and Coal Technology, 2013, 6(3): 259-270.
    [11]
    LI J, YANG S J, LIU G H. Gas flow control method of recycling gas drilling technology[J]. International Journal of Oil, Gas and Coal Technology, 2013, 6(6): 645-657.
    [12]
    YANG S J, LIU G H, LI J. Thermal stress on bottom hole rock of gas drilling[J]. International Journal of Oil, Gas and Coal Technology, 2012, 5(4): 385-398.
    [13]
    MOORE P L. Five factor that affect drilling rate[J]. Oil and Gas Journal, 1958, 56(40): 141-162.
    [14]
    BOURGOYNE A T, MILLHEIM K K, CHENEVERT M E, et al. Applied drilling engineering[C]// Social of Petroleum Engineer 31656. 1985.
    [15]
    MURRAY A S, CUNNINGHAM R A. Effect of mud column pressure on drilling rate. transaction of american istitute of mining, metallurgical, and petroleum engineer[J]. 1955, 205: 196-204.
    [16]
    CUNNINGHAM R A, FENINK J G. Laboratory study of effect of overburden, formation, and mud column pressure on drilling rate of permeable formations[J]. Transaction of American Istitute of Mining, Metallurgical, and Petroleum Engineer, 1959, 216: 9-17.
    [17]
    BLACK A D, GREEN S J. Laboratory simulation of deep well drilling[R]. Petroleum Engineer, 1978.
    [18]
    SHEFFIELD J S, SITZMAN J J. Air drilling practices in the midcontinent and rocky mountain areas[C]// Social of Pereoleum Engineer 13490. 1985.
    [19]
    仉鸿云, 高德利, 郭伯云. 气体钻井井底岩石热应力分析[J]. 中国石油大学学报(自然科学), 2013, 34(1): 70-74. (ZHANG Hong-yun, GAO De-li, GUO Bo-yun. Downhole rock thermal stress analysis in gas drilling[J]. Journal of China University of Petroleum (Science edition), 2013, 34(1): 70-74. (in Chinese))
    [20]
    陶文铨. 传热学[M]. 西安: 西北工业大学出版社, 2006, 12. (TAO Wen-shuan. Heat transfer theory[M]. Xi'an: Northwestern Polytechnic University Press, 2006. (in Chinese))
    [21]
    王龙甫. 弹性力学[M]. 2版. 北京: 科学出版社, 1979. (WANG Long-fu. Elastic mechanics[M]. 2nd ed. Beijing: Science Press, 1979. (in Chinese))
    [22]
    陈 勉, 金 衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008. (CHEN Mian, JIN Yan, ZHANG Guang-qing. Rock mechanics of petroleum engineering[M]. Beijing: Science Press, 2008. (in Chinese))
  • Related Articles

    [1]ZHANG Nan, LI Bo, WANG Tiancheng, JIANG Jiwei, WANG Hanwu. Centrifugal model tests on stability of embankment on soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 222-225. DOI: 10.11779/CJGE2023S10032
    [2]FU Hai-ping, ZHENG Jun-jie, LAI Han-jiang. Discrete element analysis of the development and evolution of “soil arching” within a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2050-2057. DOI: 10.11779/CJGE201711013
    [3]CHEN Yu-min, LIU Han-long, CHEN Chen-wei, YANG Gui, WANG Wei-guo. Model tests on deformation of embankment in blast-induced liquefied field[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2009-2016. DOI: 10.11779/CJGE201711008
    [4]LU Jian-hui, RUAN Long-fei, WANG Yong-qing. Impervious structure of reservoir embankment in soft soil foundation of Yangtze Estuary[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 195-202. DOI: 10.11779/CJGE2016S1037
    [5]FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
    [6]YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018
    [7]DANG Fa-ning, LIU Hai-wei, WANG Xue-wu. Application of bamboo as tensile reinforcement to strengthening of embankment of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 44-48.
    [8]RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089.
    [9]CHEN Fuquan, LI Achi. Improved design method of geosynthetic reinforced pile supported embankments on soft soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1804-1808.
    [10]CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441.
  • Cited by

    Periodical cited type(35)

    1. 张季如,陈敬鑫,王磊,彭伟珂. 三轴剪切过程中排水条件对钙质砂颗粒破碎、变形和强度特性的影响. 岩土力学. 2024(02): 375-384 .
    2. 黄良,刘鑫,兰恒星. 钙质砂特征形状分析及不排水剪切强度研究. 工程地质学报. 2024(02): 378-386 .
    3. 陈军浩,张艳娥,王刚,王恒. 不同固结路径下钙质砂固结排水强度性状研究. 岩土力学. 2024(08): 2290-2298 .
    4. 钟昊宇,汤斌,王银川. 长期直接剪切作用下钙质砂的颗粒破碎特性研究. 水利水运工程学报. 2024(04): 118-126 .
    5. 王建平,安韶,方斌. 基于离散元的强夯法加固珊瑚礁砂地基机理分析. 工业建筑. 2024(10): 199-204 .
    6. 刘萌成,陈茂林,王涓. 钙质砂固结排水剪切特性三轴试验. 中国公路学报. 2023(01): 47-57 .
    7. 尹福顺,李飒,刘鑫. 钙质粗粒料颗粒强度和压缩特性的试验研究. 岩土力学. 2023(04): 1120-1129+1152 .
    8. 李鹏琳,黄小明,陶然,徐青云. 珊瑚礁地区混凝土管桩承载特性模拟分析. 铁道建筑. 2023(05): 94-99 .
    9. 曾凯锋,向富榆,刘华北. 钙质砂单调及循环单剪试验研究. 华中科技大学学报(自然科学版). 2023(07): 27-35 .
    10. 徐刚敏,吴杨,吴毅航,黄义正,曾润,廖静容,李能. 间断级配吹填珊瑚砂剪切和颗粒破碎特性. 土木与环境工程学报(中英文). 2023(04): 56-64 .
    11. Huan He,Siyue Li,Kostas Senetakis,Matthew Richard Coop,Songyu Liu. Influence of anisotropic stress path and stress history on stiffness of calcareous sands from Western Australia and the Philippines. Journal of Rock Mechanics and Geotechnical Engineering. 2022(01): 197-209 .
    12. 刘萌成,胡帅峰,戴鹏飞. 南海钙质砂不排水剪切特性三轴试验. 中国公路学报. 2022(04): 69-76 .
    13. 高敏,何绍衡,夏唐代,丁智,王新刚,张琼方. 复杂应力路径下钙质砂颗粒破碎及抗剪强度特性. 岩土力学. 2022(S1): 321-330 .
    14. 王兆南,王刚,叶沁果,殷浩. 三轴应力路径下珊瑚砂的颗粒破碎模型. 岩土工程学报. 2021(03): 540-546 . 本站查看
    15. 秦志光,袁晓铭,曹振中,莫红艳. 吹填珊瑚礁砂地基处理方法适用性与加固效果应用研究. 自然灾害学报. 2021(01): 78-88 .
    16. 张季如,罗明星,彭伟珂,张弼文. 不同应力路径下钙质砂力学特性的排水三轴试验研究. 岩土工程学报. 2021(04): 593-602 . 本站查看
    17. Gang Wang,Zhaonan Wang,Qinguo Ye,Jingjing Zha. Particle breakage evolution of coral sand using triaxial compression tests. Journal of Rock Mechanics and Geotechnical Engineering. 2021(02): 321-334 .
    18. 王兆南,王刚,叶沁果,查京京. 考虑颗粒破碎的钙质砂边界面循环本构模型. 岩土工程学报. 2021(05): 886-892 . 本站查看
    19. 刘家明,童华炜,赵寄橦,袁杰. 盐溶液环境下微生物固化技术加固钙质砂的试验研究. 科学技术与工程. 2021(12): 5046-5053 .
    20. 安晓宇,王斐,左殿军,朱前林. 珊瑚礁钙质砂微观结构分析. 河南科技大学学报(自然科学版). 2021(06): 6-11+18+4 .
    21. 张钰,丁选明,彭宇,蒋春勇. 珊瑚碎屑颗粒内孔隙特性微观试验研究. 防灾减灾工程学报. 2021(03): 497-503 .
    22. 罗明星,张季如,刘晓璇. 考虑应力路径和颗粒破碎影响的钙质砂剪胀特性及剪胀方程研究. 岩土工程学报. 2021(08): 1453-1462 . 本站查看
    23. 王刚,杨俊杰,王兆南. 钙质砂临界状态随颗粒破碎演化规律分析. 岩土工程学报. 2021(08): 1511-1517 . 本站查看
    24. 余玮平,顾琳琳,王振,闫斌,叶冠林. 钙质砂颗粒破碎对临界状态影响的试验研究. 工程地质学报. 2021(05): 1276-1285 .
    25. 何绍衡,夏唐代,于丙琪,丁智,高敏,单华峰. 温度效应对钙质砂体积应变和固结特性的影响. 浙江大学学报(工学版). 2020(02): 221-232+290 .
    26. 曾凯锋,刘华北. 考虑颗粒破碎的钙质砂修正邓肯-张E-B模型. 工程地质学报. 2020(01): 94-102 .
    27. 杨超. 钙质砂颗粒破碎的研究进展. 五邑大学学报(自然科学版). 2020(01): 52-57+67 .
    28. 王秉相,程普锋,郑宇轩,周风华. 应力波在散体颗粒中的传播规律. 高压物理学报. 2020(04): 100-107 .
    29. 王伟光,郝秀文,李婉,姚志华. 碾压方式对珊瑚砂地基工程特性的影响. 长江科学院院报. 2020(08): 113-119 .
    30. 张季如,华晨,罗明星,张弼文. 三轴排水剪切下钙质砂的颗粒破碎特性. 岩土工程学报. 2020(09): 1593-1602 . 本站查看
    31. 吴杨,崔杰,李能,王星,吴毅航,郭舒洋. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究. 岩土力学. 2020(10): 3181-3191 .
    32. 李腾飞,柴寿喜. 四种形状珊瑚砂颗粒组合试样的静止侧压力系数变化. 天津城建大学学报. 2020(06): 404-408 .
    33. 王刚,查京京,魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律. 岩土工程学报. 2019(04): 755-760 . 本站查看
    34. 姚凯,孙秋,钱春杰,石名磊. 土石混合路堑边坡稳定分析. 西部交通科技. 2019(03): 14-18+161 .
    35. 何绍衡,夏唐代,李玲玲,丁智,单华峰. 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究. 岩石力学与工程学报. 2019(12): 2535-2549 .

    Other cited types(24)

Catalog

    Article views PDF downloads Cited by(59)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return