• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Hao, LUO Qiang, ZHANG Liang, JIANG Liang-wei, ZHANG Jia-guo. Centrifugal model tests on shoulder balance weight retaining wall with various motion modes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 675-682. DOI: 10.11779/CJGE201504013
Citation: LI Hao, LUO Qiang, ZHANG Liang, JIANG Liang-wei, ZHANG Jia-guo. Centrifugal model tests on shoulder balance weight retaining wall with various motion modes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 675-682. DOI: 10.11779/CJGE201504013

Centrifugal model tests on shoulder balance weight retaining wall with various motion modes

More Information
  • Received Date: September 03, 2014
  • Published Date: May 05, 2015
  • Using the new shoulder balance weight retaining wall of an old embankment widening project of a mountainous highway as the prototype, four groups of geotechnical centrifugal model tests are designed based on the wall motions under translation (T), rotating around base (RB), rotation around top (RT) and T+RB modes, the impact of wall motion modes on earth pressure and deformation of the filling is discussed, and the process of soils at various depths entering in to the active earth pressure is analyzed. The results show that: (1) The wall motion modes almost have no influence on the values and distribution of earth pressure on the upper wall, but when the ratio of displacement to height of retaining wall is less than 0.3%~0.5%, the shallow layer fills behind the upper wall have soil arching effect which is caused by wall-soil friction, and the coefficient of horizontal earth pressure increases; (2) The equilibrator has a shadowing effect on the down wall earth pressure, and the influence area is about 1/3 height of the down wall below the equilibrator. The results reduce the position of the acting point of earth pressure resultant force; (3) The motion modes have obvious impact on the fill settlement. When the maximum wall displacements are the same, the fill settlement of the T mode is significantly larger than that of the RB and RT modes. Under the RT mode, although it has the same displacement area as the RT mode, the equilibrator deflects downward. The fill settlement is promoted, leading to that the fill settlement of the RT mode is larger than that of RB mode, and the second fracture surface occurs easier on the upper wall.
  • [1]
    COULOMB A C. Essai sur une application des régles de Maximis & Minimis à quelques Problèmes de Statique, relatifs à l'Architecture[J]. Présentés à l'Academie des Sciences par divers Savans, 1776, 7: 343-382. (COULOMB A C. Test on an application of the rules of maximis & minimis some static problems related to architecture[J]. Presented to the Academy of Sciences by Various Savants, 1776, 7: 343-382. (in French))
    [2]
    RANKINE W J M. On the stability of loose earth[J]. Philosophical Transactions of the Royal Society of London, 1857: 9-27.
    [3]
    刘国楠, 胡荣华, 潘效鸿, 等. 衡重式桩板挡墙上墙土压力模型试验研究[J]. 岩土力学, 2011, 32(增刊2): 94-99. (LIU Guo-nan, HU Rong-hua, PAN Xiao-hong, et al. Model tests on earth pressure of upper wall of sheet pile wall with relieving platform[J]. Rock and Soil Mechanics, 2011, 32(S2): 94-99. (in Chinese))
    [4]
    刘永春. 衡重式桩板挡墙的模型试验研究[D]. 北京: 中国铁道科学研究院, 2010. (LIU Yong-chun. The model test research on pile-supported relieving retaining wall[D]. Beijing: China Academy of Railway Sciences, 2010. (in Chinese))
    [5]
    罗强, 蔡英, 邵启豪. 成都黏土重力式挡土墙的工程试验[J]. 西南交通大学学报, 1995, 30(3): 270-274. (LUO Qing, CAI Ying, SHAO Qi-hao. Experimental study on gravity retaining wall filled with chengdu clay[J]. Journal of Southwest Jiaotong University, 1995, 30(3): 270-274. (in Chinese))
    [6]
    TERZAGHI K. Large retaining-wall test I. pressure of dry sand[J]. Engineering News-Record, 1900, 112(5): 136-140.
    [7]
    FANG Y S, ISHIBASH I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(3): 317-333.
    [8]
    FANG Y S, CHENG F P, CHEN R T. Earth pressures under general wall movements[J]. Journal of Geotechnical Engineering, ASCE, 1993, 24(2): 113-131.
    [9]
    周应英, 任姜龙. 刚性挡土墙主动土压力的试验研[J]. 岩土工程学报, 1990, 12(2): 19-26. (ZHOU Ying-ying, REN Jiang-long. An experimental study on active earth pressure behind rigid retaining wall[J]. Chinese Journal Geotechnical Engineering, 1990, 12(2): 19-26. (in Chinese))
    [10]
    KOBAKHIDZE A F. Form of the diagram of backfill pressure on a retaining wall[J]. Soil Mechanics and Foundation Engineering, 1977, 14(1): 68-73.
    [11]
    BANG S. Active earth pressure behind retaining walls[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 407-412.
    [12]
    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 302-318.
    [13]
    TSAGARELI Z V. Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface[J]. Soil Mechanics and Foundation Engineering, 1965, 2(4): 197-200.
    [14]
    KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J. Experimental analysis of earth pressure against rigid retaining walls under translation mode[J]. Géotechnique, 2013, 63(12): 1020-1028.
    [15]
    徐日庆, 龚慈, 魏纲. 考虑平动位移效应的刚性挡土墙土压力理论[J]. 浙江大学学报(工学版), 2005, 39(1): 119-122. (XU Ri-qing, GONG Ci, WEI Gang. Theory of earth pressure against rigid retaining walls considering translational movement effect[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(1): 119-122. (in Chinese))
    [16]
    应宏伟, 蒋波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 717-722. (YING Hong-wei, JIANG Bo, XIE Kang-he. Distribution of active pressure against retaining walls considering arching effects[J]. Chinese Journal Geotechnical Engineering, 2007, 29(5): 717-722. (in Chinese))
    [17]
    王元战, 李新国, 陈楠楠. 挡土墙主动土压力分布与侧压力系数[J]. 岩土力学, 2005, 26(7): 1019-1022. (WANG Yuan-zhan, LI Xin-guo, CHEN Nan-nan. Active earth pressure on a retaining wall and lateral coefficient of earth pressure[J]. Rock and Soil Mechanics, 2005, 26(7): 1019-1022. (in Chinese))
    [18]
    王元战, 李蔚, 黄长虹. 墙体绕基础转动情况下挡土墙主动土压力分布[J]. 岩土工程学报, 2003, 25(2): 208-211. (WANG Yuan-zhan, LI Wei, HUANG Chang-hong. Distribution of active earth pressure with wall movement of rotation about base[J]. Chinese Journal Geotechnical Engineering, 2003, 25(2): 208-211. (in Chinese))
    [19]
    TERAZGHI K. Theoretical soil mechanics[M]. New York: J Wiley and Sons, Inc, 1943.
    [20]
    陆阳, 廖敬梅, 廖军. 高填方路基衡重式挡墙的变形及稳定的现场监测[J]. 中国公路工程, 2006, 31(4): 9-13. (LU Yang, LIAO Jing-mei, LIAO Jun. Field monitoring of a gravity balanced retaining wall[J]. China Railway Science, 2006, 31(4): 9-13. (in Chinese))
    [21]
    徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-86. (XU Guang-min, ZHANG Wei-min. Study of the grain size effect and boundary effect in centrifugal model tests[J]. Chinese Journal Geotechnical Engineering, 1996, 18(3): 80-86. (in Chinese))
    [22]
    杨俊杰, 柳飞, 丰泽康男, 等. 砂土地基承载力离心模型试验中的粒径效应研究[J]. 岩土工程学报, 2007, 29(4): 477-483. (YANG Jun-jie, LIU Fei, TOYOSAWAY, et al. Particle size effects on bearing capacity of sand ground in centrifugal tests[J]. Chinese Journal Geotechnical Engineering, 2007, 29(4): 477-483. (in Chinese))
    [23]
    FUGLSANG L D, OVESEN N K. The application of the theory of modelling to centrifuge studies[J]. Centrifuge in Soil Mechanics, 1988: 119-138.
    [24]
    杜延龄. 土石坝离心模型试验研究[J]. 水利水电技术, 1997, 28(6): 54-58. (DU Yan-ling. Study on the centrifugal model test for earth-rock dam[J]. Technology of Water Resources and Hydropower, 1997, 28(6): 54-58. (in Chinese))
    [25]
    周镜, 李惠康, 郑明成. 衡重式挡墙的模型试验及其土压力计算[J]. 土木工程学报, 1963(10): 58-73. (ZHOU Jing, LI Hui-kang, ZHENG Ming-cheng. Model tests on balance weight retaining wall and calculation of earth pressure[J]. China Civil Engineering Journal, 1963(10): 58-73. (in Chinese))
    [26]
    李浩, 罗强, 张良, 等. 衡重式加筋土挡墙土工离心模型试验研究[J]. 岩土工程学报, 2014, 36(3): 458-465. (LI Hao, LUO Qiang, ZHANG Liang, et al. Centrifugal model tests on shoulder balance weight retaining wall with reinforced earth[J]. Chinese Journal Geotechnical Engineering, 2014, 36(3): 458-465. (in Chinese))
  • Related Articles

    [1]ZHOU Jie, ZHU Kefan, LIU Chengjun, SHEN Panpan. Shear characteristics of steel pile-soft clay interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 49-53. DOI: 10.11779/CJGE2024S20038
    [2]YAN Junbiao, KONG Lingwei, LI Tianguo, ZHOU Zhenhua. Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1445-1452. DOI: 10.11779/CJGE20230350
    [3]ZHOU Baochun, WANG Jiangwei, SHAN Lixia, LI Ying, LANG Mengting, KONG Lingwei. Torsional ring shear tests on residual strength of expansive soils with different swelling potentials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1325-1331. DOI: 10.11779/CJGE20230225
    [4]MIAO Fasheng, ZHAO Fancheng, WU Yiping, MENG Jiajia. Strength characteristics of slip zone soils of Tongjiaping landslide in Three Gorges Reservoir area based on seepage-ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1480-1489. DOI: 10.11779/CJGE20220456
    [5]LIN Peiyuan, GUO Panfeng, GUO Chengchao, CHEN Lichao, WANG Fuming. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93. DOI: 10.11779/CJGE20210845
    [6]WANG Jun, ZHU Chen, LIU Fei-yu, KONG Jian-jie, YAO Jia-min. Shear strength of reinforced soil interface under normal cyclic loading and its prediction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 954-960. DOI: 10.11779/CJGE202205019
    [7]FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, YANG Ying-ming, WEN Tao. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014
    [8]YAN Shu-wang, LIN Shu, JIA Zhao-lin, LANG Rui-qing. Large-scale direct shear tests on shear strength of interface between marine soil and steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 495-501. DOI: 10.11779/CJGE201803013
    [9]XU Xiao-feng, WEI Hou-zhen, MENG Qing-shan, WEI Chang-fu, AI Dong-hai. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733.
    [10]YE Weimin, CHEN Bao, BIAN Zuoxiu, ZHU Hehua, BAI Yun. Tri-axial shear strength of Shanghai unsaturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 317-321.
  • Cited by

    Periodical cited type(26)

    1. 陈存强,汪义龙,周延明,顾雷雨,曹睿,冯来宏,高利晶,杨康. 灵东煤矿上分层综放开采型煤相似材料模拟试验研究. 煤炭技术. 2024(01): 51-55 .
    2. 郑纪峰,李啸天. 厚硬顶板隅角悬顶分段多次水力压裂技术研究. 煤炭技术. 2024(03): 21-25 .
    3. 刘洪涛,罗紫龙,韩子俊,韩洲,陈小港,彭佳琛. 厚煤层大采高综放工作面覆岩断裂演化规律研究. 煤炭科学技术. 2024(03): 1-12 .
    4. 秦志宏,赵光明,孟祥瑞,程详,顾清恒,朱世奎. 基于分布式光纤技术的深井工作面覆岩采动裂隙演化规律研究. 采矿与安全工程学报. 2024(05): 889-898 .
    5. 彭宝山,王永乐,杨学孟. 特厚弱胶结顶板煤层综放开采覆岩破坏特征与强矿压机理. 煤炭技术. 2024(10): 75-80 .
    6. 孙斌杨,袁亮,张平松,吴荣新. 巨厚砾岩下采场覆岩运移与离层演化的光-电感知试验研究. 中国矿业大学学报. 2024(05): 977-992 .
    7. 于美鲁,王中文,刘瑜,李春元,李政岱,王鲁瑀. 不同松散层第四含水层水压条件下关键层破断力学机理研究. 采矿与岩层控制工程学报. 2024(05): 132-147 .
    8. 陈璐,余茜,罗容,周子龙,曾铃,郭一鹏. 柱式采空区矿柱失稳诱导边坡滑塌机制研究. 采矿与岩层控制工程学报. 2024(05): 148-163 .
    9. 杨华富,沈建廷. 基于数值模拟的厚煤层回采期间覆岩采动应力及能量变化研究. 陕西煤炭. 2024(12): 21-25 .
    10. 薛梦. 基于断裂带基岩地下3层车站施工技术研究. 建筑机械. 2024(12): 191-195 .
    11. 任连伟,李梁,王自强,邹友峰,顿志林,王树仁. 采空区场地高速铁路路基动力加载系统研发与模型试验. 煤炭学报. 2024(12): 4752-4767 .
    12. 肖江,张成,孙亚超. 大巷煤柱回收工作面覆岩破坏及应力演化规律研究. 煤炭技术. 2023(04): 10-14 .
    13. 徐刚,张春会,张震,刘晓刚,冯彦军,蔺星宇,马镕山,刘前进,李正杰. 综放工作面顶板灾害类型和发生机制及防治技术. 煤炭科学技术. 2023(02): 44-57 .
    14. 刘海洋,孟凡林,赵刚. 榆树泉煤矿厚硬顶板无煤柱自成巷卸压方案设计研究. 能源与环保. 2023(03): 286-292 .
    15. 张村,任赵鹏,兰世勇,方尚鑫,芦佳乐,乔元栋. 煤矿开采损伤数值模拟量化表征与应用. 矿业科学学报. 2023(03): 398-408 .
    16. 金宁平,付宝杰. 厚煤层分层采动直覆砂岩运移规律研究. 矿业研究与开发. 2023(05): 43-49 .
    17. 左建平,于美鲁,孙运江,吴根水. 不同厚度岩层破断模式转变机理及力学模型分析. 煤炭学报. 2023(04): 1449-1463 .
    18. 陆占金. 薄基岩厚松散层煤层覆岩导水断裂带发育高度研究. 矿业安全与环保. 2023(03): 105-110 .
    19. 刘元嘉. 综放工作面过集中煤柱矿压显现规律及控制技术. 能源与节能. 2023(11): 131-133 .
    20. 陈嘉,赵忠明,吴建帮. 采动覆岩“三带”移动变形及裂隙几何分形规律研究. 能源与环保. 2023(11): 36-43 .
    21. 李树刚,刘李东,赵鹏翔,林海飞,徐培耘,卓日升. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析. 煤炭科学技术. 2022(01): 95-104 .
    22. 索永录,白愿. 多年冻土层下煤层开采覆岩破断规律研究. 煤炭技术. 2022(03): 5-9 .
    23. 郭瑞,张勇,陈庆港. 动静载荷下深部开挖巷道围岩变形破坏特征及支护优化. 煤炭技术. 2022(12): 81-85 .
    24. 任建慧. 综放工作面过上覆集中煤柱矿压显现规律及控制技术研究. 中国煤炭. 2022(S1): 248-257 .
    25. 贾林刚. 软岩近距离煤层采动覆岩破坏特征模拟研究. 矿山测量. 2021(03): 1-6 .
    26. 王桂利,孙文杰,赵猛,马志峰,巩思园. 深部临空巨厚坚硬顶板断裂矿震规律及成因研究. 能源与环保. 2021(10): 300-305 .

    Other cited types(35)

Catalog

    Article views (366) PDF downloads (256) Cited by(61)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return