• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Ming-hua, ZHANG Rui, LEI Yong. Optimization of upper bound finite element method based on feasible arc interior point algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 604-611. DOI: 10.11779/CJGE201404002
Citation: ZHAO Ming-hua, ZHANG Rui, LEI Yong. Optimization of upper bound finite element method based on feasible arc interior point algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 604-611. DOI: 10.11779/CJGE201404002

Optimization of upper bound finite element method based on feasible arc interior point algorithm

More Information
  • Received Date: March 26, 2013
  • Published Date: April 21, 2014
  • The upper bound finite element method converts the problem of finding a kinematic admissible velocity field into a mathematical programming one, which can overcome the difficulty of artificially constructing a kinematic velocity field, thus, it has a broad prospect in applications to complex problems. The formulation of the upper bound finite element method based on nonlinear programming can avoid linearization of yield functions, as a result, it greatly reduces the optimization variables and saves a great deal of memory space. However, this leads to a nonlinear programming model that is quite complex. By introducing a nonlinear upper bound programming model, the steps for its optimization using feasible arc interior point algorithm are discussed. Firstly, the BFGS formula is taken as the updating rules for Hessian of yield functions to avoid the ill-conditioning problem in computation. Secondly, by constructing a feasible arc, the shortcoming of a too short step when the current iteration point reaches the nonlinear constraint boundary is overcome. Finally, the Wolfe's line search technique is used for step-length search which enhances the line search efficiency. Example analysis by MATLAB programming shows that the proposed method is highly efficient, numerically stable and accurate enough for engineering practice, thus, it is applicable to most soil stability problems.
  • [1]
    陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报, 2002, 24(1): 1-11. (CHEN Zu-yu. Limit analysis for the classic problems of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (in Chinese))
    [2]
    CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Scientific Publishing Company, 1975.
    [3]
    ANDERHEGGEN E, KNOPFEL H. Finite element limit analysis using linear programming[J]. International Journal of Solids and Structures, 1972, 8(12): 1413-1431.
    [4]
    BOTTERO A, NEGRE R, PASTOR J, et al. Finite element method and limit analysis theory for soil mechanics problems[J]. Computer Methods in Applied Mechanics and Engineering, 1980, 22(1): 131-149.
    [5]
    SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127: 293-314.
    [6]
    杨峰, 阳军生, 张学民. 基于线性规划模型的极限分析上限有限元的实现[J]. 岩土力学, 2011, 32(3): 914-921. (YANG Feng, YANG Jun-sheng, ZHANG Xue-min. Implementation of finite element upper bound solution oflimit analysis based on linear programming model[J]. Rock and Soil Mechanics, 2011, 32(3): 914-921. (in Chinese))
    [7]
    王均星, 王汉辉, 吴雅峰. 土坡稳定的有限元塑性极限分析上限法研究[J]. 岩石力学与工程学报, 2004, 23(11): 1867-1873. (WANG Jun-xing, WANG Han-hui, WU Ya-feng. Stability analysis of soil slope by finite element method with plastic limit upper bound[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11): 1867-1873. (in Chinese))
    [8]
    杨小礼, 李亮, 刘宝琛. 大规模优化及其在上限定理有限元中的应用[J]. 岩土工程学报, 2001, 23(5): 602-605. (YANG Xiao-li, LI Liang, LIU Bao-chen. Large-scale optimization and its application to upper bound theorem using kinematical element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 602-605. (in Chinese))
    [9]
    姜功良. 浅埋软土隧道稳定性极限分析[J]. 土木工程学报, 1998, 31(5): 65-72. (JIANG Gong-liang. Limit analysis of the stability of shallow tunnels in soft ground[J]. China Civil Engineering Journal, 1998, 31(5): 65-72. (in Chinese))
    [10]
    LYAMIN A V, SLOAN S W. Upper bound limit analysis using linear finite elements and non-linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 573-611.
    [11]
    HERSKOVITS J, SANTOS G. Feasible arc interior point algorithm for nonlinear optimization[C]// Computational Mechanics, New Trends and Applications. CIMNE, Barcelona, 1998.
    [12]
    HERSKOVITS J, MAPPA P, GOULART E, et al. Mathematical programming model and algorithms for engineering design optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(33): 3244-3268.
    [13]
    COHN M Z, MAIER G. Engineering plasticity by mathematical programming[M]. New York: Pergamon Press, 1979.
    [14]
    NOCEDAL J, WRIGHT J W. Numerical optimization[M]. New York: Springer, 2006.
    [15]
    RAO S S. Engineering optimization: theory and practice[M]. New Jersey: John Wiley & Sons, 2009.
    [16]
    ABBO A J, SLOAN S W. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion[J]. Computers and Structures, 1995, 54(3): 427-441.
    [17]
    LYAMIN A V, SLOAN S W. Mesh generation for lower bound limit analysis[J]. Advances in Engineering Software, 2003, 34: 321-338.
    [18]
    DUFF I S. A code for the solution of sparse symmetric definite and indefinite systems[J]. ACM Transactions on Mathematical Software, 2004, 30(2): 118-144.
    [19]
    钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996. (QIAN Jia-huan, YIN Zong-ze. Principles of soil engineering and calculation[M]. 2nd ed. Beijing: China Water Power Press, 1996. (in Chinese))
  • Related Articles

    [1]SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
    [2]SUN Rui, YANG Jun-sheng, ZHAO Yi-ding, YANG Feng. Upper bound adaptive finite element method with higher-order element based on Drucker-Prager yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 398-404. DOI: 10.11779/CJGE202002022
    [3]JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
    [4]ZHAO Ming-hua, ZHANG Rui. Adaptive mesh refinement of upper bound finite element method and its applications in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 537-545. DOI: 10.11779/CJGE201603018
    [5]LIU Hong-jun, SHANGGUAN Shi-qing, PIAO Chun-de, JIANG De-hong. Calculation and analysis of single pile settlement based on mathematical programming algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 868-873.
    [6]TAN Xiaohui, WANG Jianguo, WU Linian, CUI Kerui, WU Daoxiang. Studies on accelerating convergence method in nonlinear stochastic finite element analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1030-1034.
    [7]DU Xiuli, WANG Zhihui, LI Liyun, JIANG Liping, HOU Shiwei. Interior stablility analysis method of soil-nailed structure based on empirical genetic-simplex algorithm[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 598-602.
    [8]HUANG Qiwu, HUANG Maosong, WANG Guihe. Calculation of bearing capacity of strip footings using lower bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 572-579.
    [9]GAO Meng, ZHANG Yuanfang. Complex algorithms for optimal design of structure in soil nailing based on three-dimensional finite element analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1008-1012.
    [10]YIN Jianhua, CHEN Jian, LEE Chack fan. A rigid finite element method for upper bound limit analysis of soil slopes subjected to pore water pressure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 273-277.
  • Cited by

    Periodical cited type(7)

    1. 冯嵩,郑颖人,高红. 岩土常规三轴Drucker-Prager准则. 岩土力学. 2024(10): 2919-2928 .
    2. 徐广丽,陈礼鹏,姜星材,蔡亮学. 横向穿越滑坡段埋地管道应变响应特性研究. 中国安全生产科学技术. 2023(01): 149-155 .
    3. 孙锐,张箭,阳军生,杨峰. 基于Mohr-Coulomb准则和二阶锥规划技术的轴对称自适应下限有限元法. 岩土工程学报. 2023(11): 2387-2395 . 本站查看
    4. 许晓亮,张家富,曾林风,徐健文,史为政. 考虑网格自适应的边坡可靠性随机有限元极限分析研究. 三峡大学学报(自然科学版). 2022(06): 48-57 .
    5. 孙锐,阳军生,李雨哲,杨峰,刘守花. 基于广义Hoek-Brown屈服准则的极限分析下限有限元法. 岩土力学. 2021(06): 1733-1742 .
    6. 高江平,杨继强,孙昕. 考虑双剪中主应力影响系数的D-P系列屈服准则研究. 岩石力学与工程学报. 2021(06): 1081-1091 .
    7. 王专利,张发,王亮,陈宁. 基于P单元复合材料胶接修理胶层应力分析. 复合材料科学与工程. 2021(06): 39-44 .

    Other cited types(7)

Catalog

    Article views (340) PDF downloads (289) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return