• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
Citation: JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003

Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction

More Information
  • Received Date: November 14, 2016
  • Published Date: March 24, 2018
  • The discontinuity topology optimization (DTO) is an upper bound limit analysis technique for modeling the stability of geotechnical problems involving soil-structure interaction. The slip-lines or discontinuities used for DTO are typically generated by interconnecting a set of nodes located at regular grid points within a domain under consideration. A key feature of this implementation is that the soil reinforcement is simulated by the soil model such that allows the soil to flow past the reinforcement as might occur for soil nailing and propped wall. And also the procedure is extended to enable rotations at the boundaries of prescribed regions to be considered as well as translation failure mechanisms to be modelled. The resulting procedure is solved by the interior point method with linear programming formulation, which allows identification of a wide variety of failure modes, including translation and /or rigid body rotation, and rigid-plastic bending of the structure due to the formation of plastic hinge. The effectiveness of this procedure is demonstrated by analyzing the stability of masonry arch bridge, anchored sheet pile wall and propped wall. The DTO output is provided, which clearly illustrates the clarity and detail of the discontinuity collapse mechanism solutions.
  • [1]
    SLOAN S W.Lower bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Engineering, 1988, 12: 61-77.
    [2]
    UKRITCHON B, WHITLE A J, SLOAN S W.Undrained limit analyses for combined loading of strip footings on clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(3): 265-276.
    [3]
    UKRITCHON B, WHITTLE A J, KLANGVIJIT C.Calculations of bearing capacity factor nγ using numerical limit analyses[J]. Journal of Geotechnical and Geo- environmental Engineering, ASCE, 2003, 129(6): 468-474.
    [4]
    BORGES L A, ZOUAIN N, COSTA C, et al.An adaptive approach to limit analysis[J]. International Journal of Solids and Structures, 2001, 38: 1707-1720.
    [5]
    CHRISTIANSEN E, PEDERSEN O S.Automatic mesh refinement in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2001, 50(6): 1331-1346.
    [6]
    LYAMIN A V, SLOAN S W.Mesh generation for lower bound limit analysis[J]. Advances in Engineering Software, 2003, 34(6): 321-338.
    [7]
    LYAMIN A V, SLOAN S W, KRABBENHOFT K, HJIAJ M.Lower bound limit analysis with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1961-1974.
    [8]
    YUAN Y, WHITTLE A J.Evaluation and prediction of 17th Street Canal I-wall stability using numerical limit analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 139(6): 841-852.
    [9]
    MUÑOZ J J, LYAMIN A V, HUERTA A. Stability of anchored sheet wall in cohesive-frictional soils by FE limit analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13): 1213-1230.
    [10]
    黄齐武. 基于锥形规划理论的数值极限分析下限法及其应用[D]. 上海: 同济大学, 2007.
    (HUANG QI-WU.Numerical lower bound limit analysis using second-order cone programming and its applications[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [11]
    MAKRODIMOPOULOS A, MARTIN C M.Upper bound limit analysis using discontinuous quadratic displacement fields[J]. Communications in Numerical Methods in Engineering, 2008, 24: 911-927.
    [12]
    MILANI G, LOURENÇO P B. A discontinuous quasi-upper bound limit analysis approach with sequential linear programming mesh adaptation[J]. International Journal of Mechanical Sciences, 2009, 51: 89-104.
    [13]
    HAMBLETON J P, SLOAN S W.A perturbation method for optimization of rigid block mechanisms in the kinematic method of limit analysis[J]. Computers and Geotechnics, 2013, 48: 260-271.
    [14]
    LE C V.Novel numerical procedures for limit analysis of structures: mesh-free methods and mathematical programming [D]. Sheffield: University of Sheffield, UK, 2010.
    [15]
    ZHOU S T, LIU Y H, CHEN S S.Upper bound limit analysis of plates utilizing the C1 natural element method[J]. Computational Mechanics, 2012, 50(5): 543-561.
    [16]
    SMITH C, GILBERT M.Application of discontinuity layout optimization to plane plasticity problems[J]. Proceedings the Royal of Society A: Mathematical, Physical and Engineering Sciences, 2007, 463: 2461-2484.
    [17]
    JIA CANG-QIN, HUANG QI-WU, XIA BAI-RU. Stability analysis of soil slope using discontinuity layout optimization[J]. Advanced Materials Research, 2015, 1065-1069: 190-198.
    [18]
    KARMARKER N.A new polynominal-time algorithm for linear programming[J]. Combinatorica, 1984, 4: 373-395.
    [19]
    GILL P E, MURRAY W, SAUNDERS M A, et al.On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method[J]. Mathematical Programming, 1986, 36: 183-209.
    [20]
    PLUMEY S.Soil-structure interaction in cut-and-cover tunnels[D]. Switzerland: EPFL, 2007.
    [21]
    NGUYEN D.Application of computational limit analysis to soil-structure interaction in masonry arch bridges[D]. Sheffield: University of Sheffield, 2008.
    [22]
    KRABBENHOFT K, DAMKILDE L, KRABBENHOFT S.Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming[J]. Computers and Structures, 2005, 83: 383-393.
  • Cited by

    Periodical cited type(7)

    1. 涂义亮,李军,方忠,周成涛,张立舟. 土石混合料剪切力学特性的精细化离散元分析. 铁道工程学报. 2024(09): 22-29 .
    2. 董建鹏,李辉. 黄土颗粒流宏细观对应关系与参数标定方法研究. 水利水电技术(中英文). 2022(04): 180-191 .
    3. 郭宇,迟世春,米晓飞. 粗粒土颗粒强度和弹性力学参数的试验研究. 岩土工程学报. 2021(09): 1675-1681 . 本站查看
    4. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    5. 卢一为,程展林,潘家军,江洎洧,徐晗. 筑坝堆石料力学特性试验等效密度确定方法研究. 岩土工程学报. 2020(S1): 75-79 . 本站查看
    6. 郭林林,别社安,寇军,张炜煌. 重力式码头抛石基床压缩特性和变形参数试验研究. 水利学报. 2019(04): 524-533 .
    7. 任秋兵,李明超,杜胜利,刘承照. 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究. 水利学报. 2019(10): 1200-1213 .

    Other cited types(11)

Catalog

    Article views (347) PDF downloads (363) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return