• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
Citation: SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781

Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming

More Information
  • Received Date: June 19, 2022
  • Available Online: November 05, 2023
  • The axisymmetric Mohr Coulomb yield surfaces have edges and corners in the three-dimensional stress space, which leads to difficulties in numerical calculation. Therefore, how to deal with the axisymmetric Mohr-Coulomb criterion efficiently has always been an important research content of the lower bound finite element limit analysis (LB-FELA) method. Firstly, the axisymmetric Mohr-Coulomb criterion is transformed into a set of inequality constraints and three linear equality constraints by introducing the complete plasticity assumption. Then, the inequality constraints are directly transformed into the second-order cone ones, which avoids the smooth approximation of numerical singularities. Finally, the axisymmetric LB-FELA model based on the Mohr Coulomb criterion is transformed into a mathematical optimization one of the second-order cone programming. The linear stress element adopted by the axisymmetric LB-FELA cannot accurately simulate the stress change in the failure region. Therefore, the mesh distribution form has a great impact on the calculation accuracy of the LB-FELA. To solve this problem, an adaptive mesh refinement strategy based on the element yield residual is proposed. By judging the degree of the node stress in the element close to the yield, the elements can be automatically identified and refined in the failure area. By analyzing the stability problems of typical axisymmetric geotechnical projects such as the bearing capacity of circular foundation and the ultimate uplift capacity of vertical anchor plate, it is shown that the proposed method has high calculation efficiency and accuracy, and it has certain theoretical value and application prospect.
  • [1]
    KHATRI V N, KUMAR J. Vertical uplift resistance of circular plate anchors in clays under undrained condition[J]. Computers and Geotechnics, 2009, 36(8): 1352-1359. doi: 10.1016/j.compgeo.2009.06.008
    [2]
    KHATRI V N, KUMAR J. Bearing capacity factor Nc under ϕ=0 condition for piles in clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(9): 1203-1225. doi: 10.1002/nag.763
    [3]
    PASTOR J, TURGEMAN S. Limit analysis in axisymmetrical problems: numerical determination of complete statical solutions[J]. International Journal of Mechanical Sciences, 1982, 24(2): 95-117. doi: 10.1016/0020-7403(82)90041-8
    [4]
    COX A D. Axially-symmetric plastic deformation in soils—Ⅱ. Indentation of ponderable soils[J]. International Journal of Mechanical Sciences, 1962, 4(5): 371-380. doi: 10.1016/S0020-7403(62)80024-1
    [5]
    KUMAR J, KHATRI V N. Bearing capacity factors of circular foundations for a general c-ϕ soil using lower bound finite elements limit analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(3): 393-405. doi: 10.1002/nag.900
    [6]
    KUMAR J, CHAKRABORTY D. Stability numbers for an unsupported vertical circular excavation in c-ϕ soil[J]. Computers and Geotechnics, 2012, 39: 79-84. doi: 10.1016/j.compgeo.2011.08.002
    [7]
    KUMAR J, CHAKRABORTY M. Upper-bound axisymmetric limit analysis using the mohr-coulomb yield criterion, finite elements, and linear optimization[J]. Journal of Engineering Mechanics, 2014, 140(12): 06014012. doi: 10.1061/(ASCE)EM.1943-7889.0000820
    [8]
    MARTIN C. M. User guide for ABC: Analysis of bearing capacity, Version 1.0[R]. Oxford: Department of Engineering Science, University of Oxford, 2004.
    [9]
    孙锐, 阳军生, 赵乙丁, 等. 基于Drucker-Prager准则的高阶单元自适应上限有限元研究[J]. 岩土工程学报, 2020, 42(2): 398-404. doi: 10.11779/CJGE202002022

    SUN Rui, YANG Junsheng, ZHAO Yiding, et al. Upper bound adaptive finite element method with higher-order element based on Drucker-Prager yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 398-404. (in Chinese) doi: 10.11779/CJGE202002022
    [10]
    孙锐, 杨峰, 阳军生, 等. 基于二阶锥规划与高阶单元的自适应上限有限元研究[J]. 岩土力学, 2020, 41(2): 687-694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002040.htm

    SUN Rui, YANG Feng, YANG Junsheng, et al. Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element[J]. Rock and Soil Mechanics, 2020, 41(2): 687-694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002040.htm
    [11]
    MAKRODIMOPOULOS A, MARTIN C M. Lower bound limit analysis of cohesive-frictional materials using second-order cone programming[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 604-634. doi: 10.1002/nme.1567
    [12]
    MAKRODIMOPOULOS A, MARTIN C M. Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(6): 835-865. doi: 10.1002/nag.567
    [13]
    杨昕光, 周密, 张伟, 等. 基于二阶锥规划的边坡稳定上限有限元分析[J]. 长江科学院院报, 2016, 33(12): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201612013.htm

    YANG Xinguang, ZHOU Mi, ZHANG Wei, et al. Upper bound finite element limit analysis of slope stability using second-order cone programming[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(12): 61-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201612013.htm
    [14]
    杨昕光, 迟世春. 土石坝坡极限抗震能力的下限有限元法[J]. 岩土工程学报, 2013, 35(7): 1202-1209. http://www.cgejournal.com/cn/article/id/15099

    YANG Xinguang, CHI Shichun. Lower bound FEM for limit aseismic capability of earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1202-1209. (in Chinese) http://www.cgejournal.com/cn/article/id/15099
    [15]
    刘锋涛, 张绍发, 戴北冰, 等. 边坡稳定分析刚体有限元上限法的锥规划模型[J]. 岩土力学, 2019, 40(10): 4084-4091, 4100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910044.htm

    LIU Fengtao, ZHANG Shaofa, DAI Beibing, et al. Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming[J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091, 4100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910044.htm
    [16]
    周锡文, 刘锋涛, 戴北冰, 等. 基于混合常应力-光滑应变单元的极限分析方法[J]. 岩土力学, 2022, 43(6): 1660-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206019.htm

    ZHOU Xiwen, LIU Fengtao, DAI Beibing, et al. Limit analysis method based on mixed constant stress-smoothed strain element[J]. Rock and Soil Mechanics, 2022, 43(6): 1660-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206019.htm
    [17]
    杨昕光, 迟世春. 基于非线性破坏准则的土坡稳定有限元上限分析[J]. 岩土工程学报, 2013, 35(9): 1759-1764. http://www.cgejournal.com/cn/article/id/15293

    YANG Xinguang, CHI Shichun. Upper bound FEM analysis of slope stability using a nonlinear failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1759-1764. (in Chinese) http://www.cgejournal.com/cn/article/id/15293
    [18]
    TANG C, TOH K C, PHOON K K. Axisymmetric lower-bound limit analysis using finite elements and second-order cone programming[J]. Journal of Engineering Mechanics, 2014, 140(2): 268-278.
    [19]
    LYAMIN A V, SLOAN S W, KRABBENHØFT K, et al. Lower bound limit analysis with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1961-1974.
    [20]
    ZHANG R, CHEN G H, ZOU J F, et al. Study on roof collapse of deep circular cavities in jointed rock masses using adaptive finite element limit analysis[J]. Computers and Geotechnics, 2019, 111: 42-55.
    [21]
    李大钟, 郑榕明, 王金安, 等. 自适应有限元极限分析及岩土工程中的应用[J]. 岩土工程学报, 2013, 35(5): 922-929. http://www.cgejournal.com/cn/article/id/15048

    LI Dazhong, CHENG Yungming, WANG Jinan, et al. Application of finite-element-based limit analysis with mesh adaptation in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 922-929. (in Chinese) http://www.cgejournal.com/cn/article/id/15048
    [22]
    ZHANG R, LI L A, ZHAO L H, et al. An adaptive remeshing procedure for discontinuous finite element limit analysis[J]. International Journal for Numerical Methods in Engineering, 2018: 287-307.
    [23]
    MUÑOZ J J, BONET J, HUERTA A, et al. Upper and lower bounds in limit analysis: adaptive meshing strategies and discontinuous loading[J]. International Journal for Numerical Methods in Engineering, 2009, 77(4): 471-501.
    [24]
    SUN R, YANG J S, ZHAO Y D, et al. Upper bound finite element limit analysis method with discontinuous quadratic displacement fields and remeshing in non-homogeneous clays[J]. Archive of Applied Mechanics, 2021, 91(3): 1007-1020.
    [25]
    ZHANG J, GAO Y F, FENG T G, et al. Upper-bound finite-element analysis of axisymmetric problems using a mesh adaptive strategy[J]. Computers and Geotechnics, 2018, 102: 148-154.
    [26]
    LIU F Q, WANG J H, ZHANG L L. Analytical solution of general axisymmetric active earth pressure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(4): 551-565.
    [27]
    LIU F Q, WANG J H. A generalized slip line solution to the active earth pressure on circular retaining walls[J]. Computers and Geotechnics, 2008, 35(2): 155-164.
    [28]
    MOSEK ApS. The MOSEK C optimizer API manual, version10.1[EB/OL]. 2023-10-01. https://www.mosek.com/.
  • Cited by

    Periodical cited type(10)

    1. 王双娇,李志清,田怡帆,李燕明,周应新,李丹丹. 微生物岩土工程技术的过去、现在与未来. 工程地质学报. 2024(01): 236-264 .
    2. 李俊,何想,张瑾璇,赵常,肖杨,刘汉龙. 微生物加固研究可视化试验系统的开发与应用. 土木与环境工程学报(中英文). 2024(03): 73-79 .
    3. 张瑾璇,刘汉龙,肖杨. 液滴微流控芯片系统研发与微生物矿化机理研究. 岩土工程学报. 2024(06): 1236-1245 . 本站查看
    4. 赖永明,俞缙,刘士雨,蔡燕燕,涂兵雄,刘谦. 低pH值下微生物诱导碳酸盐沉淀加固尾矿砂试验研究. 岩土力学. 2024(06): 1583-1596 .
    5. 刘汉龙,赵常,肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战. 岩土工程学报. 2024(07): 1347-1358 . 本站查看
    6. 王腾,钟东生,周茗如,梁生伟. 基于多孔介质理论的微生物固化砂土试验及模拟. 材料导报. 2023(S1): 163-169 .
    7. 张宇,何想,路桦铭,马国梁,刘汉龙,肖杨. 微生物-膨润土联合矿化防渗模型试验研究. 岩土力学. 2023(08): 2337-2349 .
    8. 肖维民,傅业姗,钟建敏,林馨,李双. 岩石节理中MICP反应碳酸钙沉积演化规律试验研究. 岩石力学与工程学报. 2023(S2): 3851-3860 .
    9. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    10. 肖杨,陈萌,蒋翔,刘汉龙. 拓展土力学课程学习深度和广度的教学探索. 高等建筑教育. 2021(06): 16-23 .

    Other cited types(6)

Catalog

    Article views (287) PDF downloads (77) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return