• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, DENG Xu, LIU Chang, LIU Qing-chen. Comparative analysis of influences of different deformation modes of retaining structures on displacement field of deep soils outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 273-285. DOI: 10.11779/CJGE201402002
Citation: ZHENG Gang, DENG Xu, LIU Chang, LIU Qing-chen. Comparative analysis of influences of different deformation modes of retaining structures on displacement field of deep soils outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 273-285. DOI: 10.11779/CJGE201402002

Comparative analysis of influences of different deformation modes of retaining structures on displacement field of deep soils outside excavations

More Information
  • Received Date: June 13, 2013
  • Published Date: February 20, 2014
  • The horizontal displacements of the retaining piles are monitored through the whole process of a deep excavation project. It is found that, due to the differences of horizontal bracing stiffness, the deformation modes of the retaining piles at different locations are different, and the maximum horizontal displacements also have significant differences. Through FEM modeling, the characteristics of the displacement fields caused by four deformation modes of retaining walls are analyzed. The results show that under the situations of different deformation modes of retaining structures with the same maximum horizontal displacement, the displacement fields of soils outside the excavation can be considerably different, and therefore the impacts on environment may vary greatly. In practical projects, besides controlling the maximum horizontal displacements of the retaining structures, the deformation mode of the retaining structures should be optimized according to the surrounding environment, and their kick-in deformation should be avoided.
  • [1]
    PECK R B. Deep excavation and tunneling in soft gtound[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, State-of-the-Art- volume. Mexico City, 1969: 225-290.
    [2]
    CLOUGH G W, O’ROURKE T D. Construction induced movements of insitu walls[C]// Proceedings ASCE Conference on Soil and Mechanics and Performance of Earth Retaining Structures. New York: ASCE, Special Conference, 1990: 439-470.
    [3]
    HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35: 1004-1017.
    [4]
    王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666. (WANG Wei-dong, XU Zhong-hua, WANG Jian-hua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11):1659-1666. (in Chinese))
    [5]
    DBJ08—61—97 上海市标准基坑工程设计规程[S]. 1997. (DBJ08—61—97 Shanghai standard code for design of excavation engineering[S]. 1997. (in Chinese))
    [6]
    丁勇春. 软土地区深基坑施工引起的变形及控制研究[D]. 上海: 上海交通大学, 2009. (DING Yong-chun. Excavation- induced deformation and control in soft deposits[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese))
    [7]
    刘国彬, 王卫东. 基坑工程手册[M]. 2 版. 北京: 中国建筑工业出版社, 2009. (LIU Guo-bin, WANG Wei-dong. Excavation engineering manual[M]. 2nd ed. Beijing: China Architecture and Building Press, 2009. (in Chinese))
    [8]
    CASPE M S. Surface settlement adjacent to braced open cuts[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 92(SM4): 51-59.
    [9]
    李佳川, 夏明耀. 地下连续墙深基坑开挖与纵向地下管线保护[J]. 同济大学学报, 1995, 23(5): 499-504. (LI Jia-chuan, XIA Ming-yao. Proteetion of longitudinal underground pipe lines during the diaphragm wall deep exeavation[J]. Journal of Tongji University, 1995, 23(5): 499-504. (in Chinese))
    [10]
    AYE Z Z, KARKI D, SCHULZ C. Ground movement prediction and building damage risk-assessment for the deep excavations and tunneling works in Bangkok subsoil[C]// International Symposium on Underground Excavation and Tunnelling. Bangkok, 2006: 281-297.
    [11]
    OU C Y, LIAO J T, CHENG W L. Building response and ground movements induced by a deep excavation[J]. Géotechnique, 2000, 50(3): 209-220.
    [12]
    SCHUSTER M, KUNG G T C, JUANG C H, et al. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1823-1835.
    [13]
    龚晓南, 高有潮. 深基坑工程施工设计手册[M]. 北京: 中国建筑工业出版社, 1998. (GONG Xiao-nan, GAO You-chao. Construction and design manual of deep excavation engineering[M]. Beijing: China Architecture and Building Press, 1998. (in Chinese))
    [14]
    JGJ 120—2012 建筑基坑支护技术规程[S]. 北京: 中国建筑工业出版社, 2012. (JGJ 120—2012 Technical specification for retaining and protection of building foundation excavations[S]. Beijing: China Architecture and Building Press, 2012. (in Chinese))
    [15]
    GB50497—2009 建筑基坑工程监测技术规范[S]. 北京: 中国计划出版社, 2009. ( GB50497—2009 Technical code for monitoring of building foundation pit engineering[S]. Beijing: China Planning Press, 2009. (in Chinese))
    [16]
    DB29—202—2010 建筑基坑工程技术规程[S]. 2010. (DB29—202—2010 Technical specification for retaining and protection of building foundation excavation[S]. 2010. (in Chinese))
    [17]
    郑 刚, 李志伟. 不同围护结构变形形式的基坑开挖对邻近建筑物的影响对比分析[J]. 岩土工程学报, 2012, 34(6): 970-977. (ZHENG Gang, LI Zhi-wei. Comparative analysis of responses of buildings adjacent to excavations with different deformation modes of retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 970-977. (in Chinese))
    [18]
    徐中华, 王卫东. 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31(1): 258-326. (XU Zhong-hua, WANG Wei-dong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31(1): 258-326. (in Chinese))
    [19]
    VUCETIC M, DOBRY R. Effect of soil plasticity on cyclic response[J]. Journal of Geoenvironmental Engineering, 1991, 171(1): 89-107.
    [20]
    OU C Y, LIAO J T, LIN H D. Performance of diaphragm wall construction using top-down method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 798-808.
  • Related Articles

    [1]SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
    [2]SUN Rui, YANG Jun-sheng, ZHAO Yi-ding, YANG Feng. Upper bound adaptive finite element method with higher-order element based on Drucker-Prager yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 398-404. DOI: 10.11779/CJGE202002022
    [3]JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003
    [4]ZHAO Ming-hua, ZHANG Rui. Adaptive mesh refinement of upper bound finite element method and its applications in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 537-545. DOI: 10.11779/CJGE201603018
    [5]LIU Hong-jun, SHANGGUAN Shi-qing, PIAO Chun-de, JIANG De-hong. Calculation and analysis of single pile settlement based on mathematical programming algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 868-873.
    [6]TAN Xiaohui, WANG Jianguo, WU Linian, CUI Kerui, WU Daoxiang. Studies on accelerating convergence method in nonlinear stochastic finite element analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1030-1034.
    [7]DU Xiuli, WANG Zhihui, LI Liyun, JIANG Liping, HOU Shiwei. Interior stablility analysis method of soil-nailed structure based on empirical genetic-simplex algorithm[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 598-602.
    [8]HUANG Qiwu, HUANG Maosong, WANG Guihe. Calculation of bearing capacity of strip footings using lower bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 572-579.
    [9]GAO Meng, ZHANG Yuanfang. Complex algorithms for optimal design of structure in soil nailing based on three-dimensional finite element analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1008-1012.
    [10]YIN Jianhua, CHEN Jian, LEE Chack fan. A rigid finite element method for upper bound limit analysis of soil slopes subjected to pore water pressure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 273-277.
  • Cited by

    Periodical cited type(7)

    1. 冯嵩,郑颖人,高红. 岩土常规三轴Drucker-Prager准则. 岩土力学. 2024(10): 2919-2928 .
    2. 徐广丽,陈礼鹏,姜星材,蔡亮学. 横向穿越滑坡段埋地管道应变响应特性研究. 中国安全生产科学技术. 2023(01): 149-155 .
    3. 孙锐,张箭,阳军生,杨峰. 基于Mohr-Coulomb准则和二阶锥规划技术的轴对称自适应下限有限元法. 岩土工程学报. 2023(11): 2387-2395 . 本站查看
    4. 许晓亮,张家富,曾林风,徐健文,史为政. 考虑网格自适应的边坡可靠性随机有限元极限分析研究. 三峡大学学报(自然科学版). 2022(06): 48-57 .
    5. 孙锐,阳军生,李雨哲,杨峰,刘守花. 基于广义Hoek-Brown屈服准则的极限分析下限有限元法. 岩土力学. 2021(06): 1733-1742 .
    6. 高江平,杨继强,孙昕. 考虑双剪中主应力影响系数的D-P系列屈服准则研究. 岩石力学与工程学报. 2021(06): 1081-1091 .
    7. 王专利,张发,王亮,陈宁. 基于P单元复合材料胶接修理胶层应力分析. 复合材料科学与工程. 2021(06): 39-44 .

    Other cited types(7)

Catalog

    Article views (500) PDF downloads (651) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return