Citation: | XIAO Ze'an, LI Kangliang, DUAN Jieyun, WANG Qihang, GUO Maoliang. Electrochemical characteristics of phase transition process in sodium chloride saline soil during cooling[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 200-206. DOI: 10.11779/CJGE20231193 |
[1] |
徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010.
XU Xiaozu, WANG Jiacheng, ZHANG Lixin. Frozen soil physics[M]. Beijing: Science Press, 2010. (in Chinese)
|
[2] |
何斌. 氯化钠污染砂环境下砂粒粒径对体系及X70钢电化学腐蚀行为的影响[D]. 太原: 太原理工大学, 2016.
HE Bin. Effect of Sand Particle Size on System and Electrochemical Corrosion Behavior of X70 Steel in Sodium Chloride Contaminated Sand Environment[D]. Taiyuan: Taiyuan University of Technology, 2016. (in Chinese)
|
[3] |
张俊喜, 易博, 林德源, 等. 盐渍土环境下钢筋混凝土腐蚀的电化学研究[J]. 建筑材料学报, 2016, 19(2): 390-396, 403.
ZHANG Junxi, YI Bo, LIN Deyuan, et al. Electrochemical study on the corrosion of reinforced concrete under saline soil environment[J]. Journal of Building Materials, 2016, 19(2): 390-396, 403. (in Chinese)
|
[4] |
赵永志, 何斌, 白晓红. X70钢在含氯化钠粉土中的电化学腐蚀行为研究[J]. 科技通报, 2022, 38(1): 84-89, 96.
ZHAO Yongzhi, HE Bin, BAI Xiaohong. Study on electrochemical corrosion behavior of X70 steel in silt containing sodium chloride[J]. Bulletin of Science and Technology, 2022, 38(1): 84-89, 96. (in Chinese)
|
[5] |
荆磊, 闫长旺, 刘曙光, 等. BP神经网络预测氯盐渍土环境中混凝土结构使用寿命[J]. 混凝土, 2016(10): 8-10, 15.
JING Lei, YAN Changwang, LIU Shuguang, et al. BP neural network to predict service life of concrete structures in the chlorine saline soil environment[J]. Concrete, 2016(10): 8-10, 15. (in Chinese)
|
[6] |
满都拉, 银花, 曹美琪. 盐渍土环境下混凝土耐久性研究进展[J]. 硅酸盐通报, 2016, 35(11): 3575-3580, 3606.
MAN Dula, YIN Hua, CAO Meiqi. Research progress of concrete durability in saline soil environment[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(11): 3575-3580, 3606. (in Chinese)
|
[7] |
薛明, 朱玮玮, 房建宏. 盐渍土地区公路桥涵及构筑物腐蚀机理探究[J]. 公路交通科技(应用技术版), 2008, 4(9): 24-27, 30.
XUE Ming, ZHU Weiwei, FANG Jianhong. Study on corrosion mechanism of highway bridges and culverts and structures in saline soil area[J]. Highway Traffic Science and Technology (Applied Technology Edition), 2008, 4(9): 24-27, 30. (in Chinese)
|
[8] |
LASIA A. Electrochemical Impedance Spectroscopy and its Applications[M]. New York: NYSpringer New York, 2014
|
[9] |
HAN P J, ZHANG Y F, CHEN F Y, et al. Interpretation of electrochemical impedance spectroscopy (EIS) circuit model for soils[J]. Journal of Central South University, 2015, 22(11): 4318-4328. doi: 10.1007/s11771-015-2980-1
|
[10] |
YOU Z M, LAI Y M, ZENG H Y, et al. Influence of water and sodium chloride content on corrosion behavior of cast iron in silty clay[J]. Construction and Building Materials, 2020, 238: 117762. doi: 10.1016/j.conbuildmat.2019.117762
|
[11] |
许书强. 含典型钠盐盐渍砂土的电化学行为研究[D]. 太原: 太原理工大学, 2019.
XU Shuqiang. Study on Electrochemical Behavior of Saline Sandy Soil Containing Typical Sodium Salt[D]. Taiyuan: Taiyuan University of Technology, 2019. (in Chinese)
|
[12] |
谢瑞珍. 含易溶钠盐砂土的电化学特性及其腐蚀机理研究[D]. 太原: 太原理工大学, 2019.
XIE Ruizhen. Study on Electrochemical Characteristics and Corrosion Mechanism of Sandy Soil Containing Soluble Sodium Salt[D]. Taiyuan: Taiyuan University of Technology, 2019. (in Chinese)
|
[13] |
HAN P, PENGJU, YAN Y B, et al. Study on mechanical properties of acidic and alkaline silty soil by electrochemical impedance spectroscopy[J]. International Journal of Electrochemical Science, 2018, 13(11): 10548-10563. doi: 10.20964/2018.11.19
|
[14] |
PENG S Q, WANG F, FAN L. Study on electrochemical impedance response of sulfate saline soil[J]. International Journal of Electrochemical Science, 2019, 14(9): 8611-8623. doi: 10.20964/2019.09.30
|
[15] |
王帅, 韩鹏举, 申博著, 等. 灰土电化学阻抗谱(EIS)与力学性能的试验研究[J]. 科学技术与工程, 2015, 15(18): 78-84, 127.
WANG Shuai, HAN Pengju, SHEN Bozhu, et al. The study of the relation of electrochemical impedance spectroscopy(EIS)and mechanical properties for lime-soil[J]. Science Technology and Engineering, 2015, 15(18): 78-84, 127. (in Chinese)
|
[16] |
武超. 氯化钠污染黄土状粉土的压缩特性及电化学阻抗响应与评价[D]. 太原: 太原理工大学, 2020.
WU Chao. Compressive Characteristics, Electrochemical Impedance Response and Evaluation of Loess Silt Polluted by Sodium Chloride[D]. Taiyuan: Taiyuan University of Technology, 2020. (in Chinese)
|
[17] |
肖泽岸, 侯振荣, 董晓强. 降温过程中含盐土孔隙溶液相变规律研究[J]. 岩土工程学报, 2020, 42(6): 1174-1180. doi: 10.11779/CJGE202006024
XIAO Zean, HOU Zhenrong, DONG Xiaoqiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. (in Chinese) doi: 10.11779/CJGE202006024
|
[18] |
张立新, 徐学祖, 陶兆祥, 等. 含氯化钠盐冻土中溶液的二次相变分析[J]. 自然科学进展, 1993, 3(1): 48-52.
ZHANG Lixin, XU Xuezu, TAO Zhaoxiang, et al. Secondary phase change analysis of solution in frozen soil containing sodium chloride salt[J]. Progress in Natural Science, 1993, 3(1): 48-52. (in Chinese)
|
[19] |
肖泽岸, 朱霖泽, 侯振荣, 等. 水盐相变对硫酸盐渍土基质吸力影响规律研究[J]. 岩土工程学报, 2022, 44(10): 1935-1941. doi: 10.11779/CJGE202210020
XIAO Zean, ZHU Linze, HOU Zhenrong, et al. Effects of water/salt phase transition on matric suction of sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1935-1941. (in Chinese) doi: 10.11779/CJGE202210020
|
[20] |
陈智伟. 负温下氯化钠盐渍砂土的电化学阻抗谱与等效电路模型研究[D]. 太原: 太原理工大学, 2022.
CHEN Zhiwei. Study on Electrochemical Impedance Spectrum and Equivalent Circuit Model of Sodium Chloride Saline Sandy Soil at Negative Temperature[D]. Taiyuan: Taiyuan University of Technology, 2022. (in Chinese)
|
[21] |
孙辅南. 盐-温耦合作用下黄土状粉土电化学特性及其腐蚀机理研究[D]. 太原: 太原理工大学, 2023.
SUN Fu-nan, Electrochemical Characteristics and Corrosive Mechanism of Silty Loess in Salt-temperature Coupling Effect [D]. Taiyuan: Taiyuan University of Technology, 2023. (in Chinese)
|
[22] |
PANDAY S, CORAPCIOGLU M Y. Solute rejection in freezing soils[J]. Water Resources Research, 1991, 27(1): 99-108. doi: 10.1029/90WR01785
|
[23] |
MITCHELL J K. Fundamentals of Soil Behavior[M]. 2nd ed. New York: Wiley, 1993.
|
[1] | TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030 |
[2] | ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008 |
[3] | XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024 |
[4] | HU Ya-yuan, DING Pan. Three-dimensional rheological model for double-yield surface based on equivalent time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 53-62. DOI: 10.11779/CJGE202001006 |
[5] | ZHANG Peng-wei, HU Li-ming, Meegoda Jay N, Celia Michael A. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. DOI: 10.11779/CJGE202001004 |
[6] | HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023 |
[7] | GAO Guang-yun, SHI Chao, CHEN Qing-sheng. A predictive model on equivalent number of strain cycles for earthquake loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2040-2044. DOI: 10.11779/CJGE201511014 |
[8] | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[9] | SHAO Shengjun, WANG Ting, YU Qinggao. Equivalent consolidation deformation properties and one-dimensional analysis method of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1037-1045. |
[10] | ZHANG Yujun. Equivalent model and numerical analysis and laboratory test for jointed rockmasses[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 29-32. |