• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397
Citation: LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397

Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method

More Information
  • Received Date: May 07, 2023
  • Available Online: December 19, 2023
  • This study aims to propose a fragility analysis method for evaluating the longitudinal seismic performance of long-line utility tunnels based on nonlinear incremental dynamic analysis (IDA). To this end, a simplified beam-spring model is established, to reasonably consider the mechanical properties of the joint and the soil-tunnel interaction. A series of 17 sets of ground motion records are selected and uniformly scaled to different intensity levels as the input of one-dimension free filed analyses to obtain the ground motions at the bottom slab of a utility tunnel. Finally, the seismic analysis of the utility tunnel considering wave passage effects is conducted. Based on the IDA results, the optimal intensity measure is selected. With the damage measure of the peak joint opening, the fragility curves of the utility tunnel are established using the peak velocity at the bottom slab of the tunnel and the peak velocity at the ground surface as the intensity measures, respectively. The failure probability of the utility tunnel under different earthquake intensity levels is also obtained. The proposed fragility curves and failure probability of the utility tunnel in typical site Ⅱ can provide an effective tool to estimate the seismic performance of this type of underground structures and a reliable basis for predicting damage under different earthquake intensity levels.
  • [1]
    钱七虎. 建设城市地下综合管廊, 转变城市发展方式[J]. 隧道建设, 2017, 37(6): 647-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201706001.htm

    QIAN Qihu. To transform way of urban development by constructing underground utility tunnel[J]. Tunnel Construction, 2017, 37(6): 647-654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201706001.htm
    [2]
    CHEN J, JIANG L Z, LI J, et al. Numerical simulation of shaking table test on utility tunnel under non-uniform earthquake excitation[J]. Tunnelling and Underground Space Technology. 2012, 30: 205-216. doi: 10.1016/j.tust.2012.02.023
    [3]
    梁建文, 李东桥, 王长祥, 等. 考虑预应力影响的壳-弹簧模型及其在预制地下管廊纵向抗震分析中的应用[J]. 地震工程与工程振动, 2021, 41(4): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202104002.htm

    LIANG Jianwen, LI Dongjiao, WANG Changxiang, et al. Shell-spring model for longitudinal seismic analysis of precast utility tunnels considering prestress[J]. Earthquake Engineering and Engineering Dynamics. 2021, 41(4): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202104002.htm
    [4]
    TANG G Y, FANG Y M, ZHONG Y, et al. Numerical study on the longitudinal response characteristics of utility tunnel under strong earthquake: a case study[J]. Advances in Civil Engineering, 2020: 8813303.
    [5]
    钟紫蓝, 申轶尧, 郝亚茹, 等. 基于IDA方法的两层三跨地铁地下结构地震易损性分析[J]. 岩土工程学报, 2020, 42(5): 916-924. doi: 10.11779/CJGE202005014

    ZHONG Zilan, SHEN Yiyao, HAO Yaru, et al. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. (in Chinese) doi: 10.11779/CJGE202005014
    [6]
    ZHONG Z L, SHEN Y Y, ZHAO M, et al. Seismic performance evaluation of two-story and three-span subway station in different engineering sites[J]. Journal of Earthquake Engineering, 2021, 26(14): 1-31.
    [7]
    ZHONG Z L, FILIATRAULT A, AREF A. Numerical simulation and seismic performance evaluation of buried pipelines rehabilitated with cured-in-place-pipe liner under seismic wave propagation[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(5): 811-829.
    [8]
    LI J Q, ZHONG Z L, WANG S R, et al. Seismic fragility analysis of water supply pipelines retrofitted with corrosion-protection liner buried in non-uniform site[J]. Soil Dynamics and Earthquake Engineering. 2024, 176: 108333. doi: 10.1016/j.soildyn.2023.108333
    [9]
    禹海涛, 李心熙, 袁勇, 等. 沉管隧道纵向地震易损性分析方法[J]. 中国公路学报. 2022, 35(10): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htm

    YU Haitao, LI Xinxi, YUAN Yong, et al. Seismic vulnerability analysis method for longitudinal response of immersed tunnels[J]. China Journal of Highway and Transport, 2022, 35(10): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htm
    [10]
    LONG X H, MA Y T, MIAO Y, et al. Longitudinal seismic fragility analysis of long tunnels under multiple support excitation[J]. Soil Dynamics and Earthquake Engineering. 2023, 164: 107608. doi: 10.1016/j.soildyn.2022.107608
    [11]
    城市轨道交通结构抗震设计规范: GB50909—2014[S]. 北京: 中国计划出版社, 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB50909—2014[S]. Beijing, China Planning Press, 2014. (in Chinese)
    [12]
    SILVIA M, FRANK M, MICHAEL H S, et al. OpenSees command language manual[Z]. Berkeley: Earthquake Engineering Center, University of California, 2009.
    [13]
    城市综合管廊工程技术规范: GB50838—2015[S]. 北京: 中国计划出版社, 2015.

    Technical Code for Urban Utility Tunnel Engineering: GB50838—2015[S]. Beijing, China Planning Press, 2015. (in Chinese)
    [14]
    ZHAO J, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. Aci Structural Journal, 2007, 104(2): 133-141.
    [15]
    FILIPPOU F C, POPOV E P, BERTERO V V. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints[R]. Berkeley: Earthquake Engineering Research Center, University of California, 1983.
    [16]
    冯立, 丁选明, 王成龙, 等. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004021.htm

    FENG Li, DING Xuanming, WANG Chenglong, et al. Shaking table model test on seismic responses of utility tunnel with joint[J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004021.htm
    [17]
    胡正一. 非一致地震激励下预制装配式综合管廊结构纵向地震响应及易损性研究[D]. 北京: 北京工业大学, 2022: 11-31.

    HU Zhengyi. Study on Longitudinal Seismic Response and Vulnerability of Composite Utility Tunnel Structure under Non-Uniform Seismic Excitation[D]. Beijing: Beijing University of Technology, 2022: 11-31. (in Chinese)
    [18]
    城市轨道交通岩土工程勘察规范: GB50307—2012[S]. 北京: 中国计划出版社, 2014.

    Code for Geotechnical Investigation of Urban Rail Transit: GB50307—2012[S]. Beijing, China Planning Press, 2012. (in Chinese)
    [19]
    油气输送管道线路工程抗震技术规范: GB/T50470—2017[S]. 北京: 中国计划出版社, 2017.

    Seismic Technical Code for Oil and Gas Transmission Pipeline Engineering: GB/T50470—2017[S]. Beijing, China Planning Press, 2017. (in Chinese).
    [20]
    TSINIDIS G. Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research. 2017, 62: 1-22.
    [21]
    FEMA. Seismic Performance Assessment of Buildings: Volume 1 Methodology[R]. Washington D C: Federal Emergency Management Agency, 2012.
    [22]
    FEMA. Seismic Performance Assessment of Buildings Volume 2- Implementation Guide[R]. Washington D C: Federal Emergency Management Agency, 2012.
    [23]
    BULLOCK Z, LIEL A B, PORTER K A, et al. Site-specific liquefaction fragility analysis: cloud, stripe, and incremental approaches[J]. Earthquake Engineering & Structural Dynamics. 2021, 50(9): 2529-2550.
    [24]
    CHEN Z Y, WEI J S. Correlation between ground motion parameters and lining damage indices for mountain tunnels[J]. Natural Hazards. 2013, 65(3): 1683-1702. doi: 10.1007/s11069-012-0437-5
    [25]
    钟紫蓝, 史跃波, 李锦强, 等. 考虑土体动力特征参数相关性的工程场地随机地震反应分析[J]. 岩土力学, 2022, 43(7): 2015-2024. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm

    ZHONG Zilan, SHI Yuebo, LI Jinqiang, et al. Stochastic seismic response analysis of engineering site considering correlations of critical soil dynamic parameters[J]. Rock and Soil Mechanics, 2022, 43(7): 2015-2024. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm
    [26]
    杜修力, 许紫刚, 许成顺, 等. 基于等效线性化的土–地下结构整体动力时程分析方法研究[J]. 岩土工程学报, 2018, 40(12): 2155-2163. doi: 10.11779/CJGE201812001

    DU Xiuli, XU Zigang, XU Chengshun, et al. Time-history analysis method for soil-underground structure system based on equivalent linear method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (12): 2155-2162. (in Chinese) doi: 10.11779/CJGE201812001
    [27]
    DU X L, ZHAO M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 937-946. doi: 10.1016/j.soildyn.2010.04.004
    [28]
    VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 491-514.
    [29]
    城市轨道交通设计规范: DGJ08109—2004[S]. 上海: 同济大学出版社, 2017.

    Urban Rail Transit Design Standard: DGJ08109—2004[S]. Shanghai: Tongji University Press, 2017. (in Chinese)
    [30]
    黄忠凯, 张冬梅. 地下结构地震易损性研究进展[J]. 同济大学学报, 2021, 49(1): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htm

    HUANG Zhongkai, ZHANG Dongmei. Recent advance in seismic fragility research of underground structures[J]. Journal of Tongji University, 2021, 49(01): 49-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htm
    [31]
    ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2012, 35: 1-12. doi: 10.1016/j.soildyn.2011.11.004
    [32]
    钟紫蓝, 冯立倩, 史跃波, 等. 序列型地震作用下地铁车站损伤分析[J]. 岩土工程学报, 2023, 45(8): 1586-1594. doi: 10.11779/CJGE20220788

    ZHONG Zilan, FENG Liqian, SHI Yuebo, et al. Seismic damage assessment of subway station subjected to mainshock aftershock sequences[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1586-1594. (in Chinese)' doi: 10.11779/CJGE20220788
    [33]
    HAZUS-MHMR1. Multi-hazard Loss Estimation Model: Manual Advanced Engineering Building Module Methodology Earthquake Technical and User's[R]. Washington D C: Federal Emergency Management Agency, 2003.
    [34]
    SALMON M, WANG J, JONES D, et al. Fragility formulations for the BART system[C]// Proceedings of the 6th US Conference on Lifeline Earthquake Engineering, TCLEE, Long Beach, 2003.
    [35]
    American Lifelines Alliance. Seismic Fragility Formulations for Water Systems: Part 1 Guideline[M]. Reston: ASCEFEMA, 2005: 1-103.
    [36]
    POWER M, ROSIDI D, KANESHIRO J. Strawman: "Screening, Evaluation, and Retrofit Design of Tunnels" Report Draft[R]. New York: National Centre for Earthquake Engineering Research, 1996.
  • Related Articles

    [1]ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
    [2]TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
    [5]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001
    [6]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [7]WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010
    [8]WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    [9]WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533.
    [10]CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82.
  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (327) PDF downloads (67) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return