• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TANG Liyun, WANG Pengyu, ZHENG Juanjuan, YU Yongtang, JIN Long, CUI Yupeng, LUO Tao. Strength deterioration mechanism and model of interface between frozen soil-rock mixtures and structures under ice water occurrence and evolution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 988-997. DOI: 10.11779/CJGE20230078
Citation: TANG Liyun, WANG Pengyu, ZHENG Juanjuan, YU Yongtang, JIN Long, CUI Yupeng, LUO Tao. Strength deterioration mechanism and model of interface between frozen soil-rock mixtures and structures under ice water occurrence and evolution[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 988-997. DOI: 10.11779/CJGE20230078

Strength deterioration mechanism and model of interface between frozen soil-rock mixtures and structures under ice water occurrence and evolution

More Information
  • Received Date: February 02, 2023
  • Available Online: May 14, 2024
  • The ice-water transitions in the pores of the interface layer between frozen soil-rock mixtures can easily induce strength degradation under temperature rise. However, there is a gap in the current researches on the mechanism and quantitative characterization of interface strength degradation. The degradation of interfacial strength under ice-water evolution in the melting process is therefore studied by the testing samples with rock contents of 0%, 15%, 30% and 45% using the nuclear magnetic resonance and direct shear tests. The strength degradation model considering the change rates of membrane water and capillary water is proposed for the first time combining with the Mohr-Coulomb criterion. The results indicate that the unfrozen capillary water increases with rock content due to the change of pore structures at the interface; the degradation degree of interfacial strength under temperature rise decreases with the increasing rock content. The attenuation of interfacial cohesion is greater than that of internal friction angle after melting. The relations between cohesion and internal friction angle with unfrozen water content are nonlinear and staged linear, respectively, because the interfacial cohesion and internal friction angle deteriorate differently with changing film water and capillary water. With the increasing rock content, the deterioration coefficients of film water and capillary water exhibit the trend of "one decreases and the other increases", and the deterioration coefficients of sliding and interlocking friction strengths show downward and upward trends respectively for both the particles and the particle-structure interface.
  • [1]
    汪双杰, 王佐, 陈建兵. 青藏高原工程走廊冻土环境与高速公路布局[M]. 上海: 上海科学技术出版社, 2017.

    WANG Shuangjie, WANG Zuo, CHEN Jianbing. Frozen Soil Environment and Expressway Layout in Engineering Corridor of Qinghai-Tibet Plateau[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2017. (in Chinese)
    [2]
    何鹏飞, 马巍, 穆彦虎, 等. 冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报, 2020, 42(2): 299-307. doi: 10.11779/CJGE202002011

    HE Pengfei, MA Wei, MU Yanhu, et al. Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 299-307. (in Chinese) doi: 10.11779/CJGE202002011
    [3]
    WEN Z, YU Q H, MA W, et al. Experimental investigation on the effect of fiberglass reinforced plastic cover on adfreeze bond strength[J]. Cold Regions Science and Technology, 2016, 131: 108-115. doi: 10.1016/j.coldregions.2016.07.009
    [4]
    杜洋, 唐丽云, 杨柳君, 等. 基于核磁共振下的冻土-结构正融过程界面特性研究[J]. 岩土工程学报, 2019, 41(12): 2316-2322. doi: 10.11779/CJGE201912017

    DU Yang, TANG Liyun, YANG Liujun, et al. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. (in Chinese) doi: 10.11779/CJGE201912017
    [5]
    程桦, 陈汉青, 曹广勇, 等. 冻土毛细-薄膜水分迁移机制及其试验验证[J]. 岩土工程学报, 2020, 42(10): 1790-1799. doi: 10.11779/CJGE202010003

    CHENG Hua, CHEN Hanqing, CAO Guangyong, et al. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. (in Chinese) doi: 10.11779/CJGE202010003
    [6]
    田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm

    TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm
    [7]
    TANG L Y, LI G, LI Z, et al. Shear properties and pore structure characteristics of soil-rock mixture under freeze-thaw cycles[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 3233-3249. doi: 10.1007/s10064-021-02118-4
    [8]
    温智, 俞祁浩, 张建明, 等. 青藏直流输变电工程基础冻结强度试验研究[J]. 岩土工程学报, 2013, 35(12): 2262-2267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312021.htm

    WEN Zhi, YU Qihao, ZHANG Jianming, et al. Experimental study on adfreezing bond strength of interface between silt and foundation of Qinghai-Tibetan transmission line[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2262-2267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312021.htm
    [9]
    PAN R K, YANG P, YANG Z H. Experimental study on the shear behavior of frozen cemented sand-structure interface[J]. Cold Regions Science and Technology, 2022, 197: 103516. doi: 10.1016/j.coldregions.2022.103516
    [10]
    TANG L Y, YANG D, LIU L, et al. Effect mechanism of unfrozen water on the frozen soil-structure interface during the freezing-thawing process[J]. Geomechanics and Engineering, 2020, 22: 245-254.
    [11]
    刘振亚, 刘建坤, 李旭, 等. 毛细黏聚与冰胶结作用对非饱和粉质黏土冻结强度及变形特性的影响[J]. 岩石力学与工程学报, 2018, 37(6): 1551-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806024.htm

    LIU Zhenya, LIU Jiankun, LI Xu, et al. Effect of capillary cohesion and ice cementation on strength and deformation of unsaturated frozen silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1551-1559. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806024.htm
    [12]
    公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

    Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [13]
    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.

    XU Xuezu, WANG Jiacheng, ZHANG Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2001. (in Chinese)
    [14]
    张继文, 穆青翼, 廖红建, 等. 考虑土体孔隙比和比表面积影响的未冻结体积含水率曲线模型[J]. 岩土力学, 2020, 41(9): 2913-2921. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009008.htm

    ZHANG Jiwen, MU Qingyi, LIAO Hongjian, et al. A soil freezing characteristic curve model for capturing void ratio and specific surface area effects[J]. Rock and Soil Mechanics, 2020, 41(9): 2913-2921. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009008.htm
    [15]
    寇璟媛, 马新岩, 滕继东, 等. 基于孔隙结构的土体未冻水含量滞回效应研究[J]. 中国公路学报, 2020, 33(9): 115-125. doi: 10.3969/j.issn.1001-7372.2020.09.012

    KOU Jingyuan, MA Xinyan, TENG Jidong, et al. Hysteresis effect of unfrozen water content in soil based on pore structure[J]. China Journal of Highway and Transport, 2020, 33(9): 115-125. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.09.012
    [16]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Guangxin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
    [17]
    丑亚玲, 郏书胜, 张庆海. 基于冻融作用的非饱和黄土-混凝土界面力学模型[J]. 工程地质学报, 2018, 26(4): 825-834. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201804001.htm

    CHOU Yaling, JIA Shusheng, ZHANG Qinghai. Mechanical model of unsaturated loess-concrete interface due to freeze-thaw action[J]. Journal of Engineering Geology, 2018, 26(4): 825-834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201804001.htm
  • Related Articles

    [1]LIU Jin, CHE Wenyue, HAO Shefeng, MA Xiaofan, YU Yongxiang, WANG Ying, CHEN Zhihao, LI Wanwan, QIAN Wei. Deterioration mechanism of mechanical properties and microstructure in xanthan gum-reinforced soil under wetting-drying cycles based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126. DOI: 10.11779/CJGE20230165
    [2]WANG Yu, XIA Houlei, MAO Suhui, YAN Liang. Deterioration rules of mudstone under unloading damage and water-rock interaction sequence[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 385-395. DOI: 10.11779/CJGE20221284
    [3]ZHANG Shuai, WANG Junjie, ZHANG Hailong, SONG Shaoxian, WU Daifeng. Elastoplastic analysis of surrounding rock of caverns considering deterioration of stiffness and strength[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 101-109. DOI: 10.11779/CJGE20221214
    [4]Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
    [5]ZHANG Zhen-hua, WANG Ye. Degradation mechanism of shear strength and compressive strength of red sandstone in drawdown areas during reservoir operation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1217-1226. DOI: 10.11779/CJGE201907005
    [6]DENG Hua-feng, XIAO Yao, LI Jian-lin, DUAN Ling-ling, ZHI Yong-yan, PAN Deng. Degradation laws of joint strength and micro-morphology under repeated shear tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 183-188. DOI: 10.11779/CJGE2018S2037
    [7]LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, ZHU Le-wen, XIE Ying-kun. Deterioration rules of shear strength in sandstones under wetting and drying cycles in acid and alkali environment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2320-2326. DOI: 10.11779/CJGE201712022
    [8]HUANG Da-wei, ZHOU Shun-hua, LAI Guo-quan, FENG Qing-song, LIU Lin-ya. Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1173-1181. DOI: 10.11779/CJGE201707002
    [9]Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [10]LIU Xinrong, FU Yan, WANG Yongxin, HUANG Linwei, QIN Xiaoying. Deterioration rules of shear strength of sand rock under water-rock interaction of reservoir[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1298-1302.
  • Cited by

    Periodical cited type(5)

    1. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
    2. 刘俊杰,陈晓冰,秦梓城,刘思佳,许昊,杨婷. 2种典型耕作方式影响下的蔗田土壤孔隙结构及其水分运动特性. 水土保持学报. 2023(02): 237-245 .
    3. 张靖,陈琳,周虎,马东豪,黄平. 基于数字图像技术的土壤孔隙结构定量研究进展. 土壤. 2023(01): 21-29 .
    4. 姬红英,褚尉荃,张东营,辛亚军,高忠国. 不同pH浸润煤样三维分形力学特征与失稳机制. 采矿与安全工程学报. 2023(06): 1301-1314 .
    5. 侯运炳,乔德峡. 击实对全尾砂固结体强度及渗透性影响. 金属矿山. 2021(10): 67-74 .

    Other cited types(21)

Catalog

    Article views (259) PDF downloads (76) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return