• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yu, XIA Houlei, MAO Suhui, YAN Liang. Deterioration rules of mudstone under unloading damage and water-rock interaction sequence[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 385-395. DOI: 10.11779/CJGE20221284
Citation: WANG Yu, XIA Houlei, MAO Suhui, YAN Liang. Deterioration rules of mudstone under unloading damage and water-rock interaction sequence[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 385-395. DOI: 10.11779/CJGE20221284

Deterioration rules of mudstone under unloading damage and water-rock interaction sequence

More Information
  • Received Date: October 16, 2022
  • Available Online: March 15, 2023
  • Engineering excavation and construction lead to unloading damage of soft rock, and its degradation characteristics under water-rock interaction are closely related to the degree of unloading damage. Taking the red mudstone in Badong area as the research object, the simulation tests on the unloading damage of mudstone are designed and carried out, and then the water-rock interaction tests are carried out on the mudstone samples. The results show that the unloading damage leads to the destruction of the local mineral particle morphology of mudstone and the development of microcracks. Under the subsequent water-rock interaction, the degree of cementation between particles continues to weaken, and the pores and fractures further expand. The macro- and meso-parameters increase with the time of water-rock interaction, in which the mass (m) first rises, then drops suddenly and then tends to be stable, the longitudinal wave velocity (P) first decreases and then rises, and the volume strain (εv) and the fractal dimension (K) increase gradually. The growth rate of each parameter increases exponentially with the increase of unloading damage degree (D). When D ≥ 0.49, the growth rate of each parameter increases sharply. The quality, longitudinal wave velocity, volume strain and fractal dimension are determined as the variables of the reaction system with water, and the nonlinear dynamics theory is used to establish the degradation model for mudstone under water-rock interaction, and the rationality of the model is verified. The results indicate that the proposed model can provide a theoretical reference for characterizing the change trend of macro- and micro-characteristic parameters of unloading damaged mudstone under water-rock interaction.
  • [1]
    朱俊杰. 滇中红层软岩水: 岩作用机理及时效性变形特性研究[D]. 成都: 成都理工大学, 2019.

    ZHU Junjie. Study on Water-Rock Interaction Mechanism and Time-Dependent Deformation Characteristics of Red Bed Soft Rock in Central Yunnan[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese)
    [2]
    冯启言, 韩宝平, 隋旺华. 鲁西南地区红层软岩水岩作用特征与工程应用[J]. 工程地质学报, 1999, 7(3): 266. doi: 10.3969/j.issn.1004-9665.1999.03.012

    Feng Qiyan, Han Baoping, Sui Wanghua. Water-rock interaction characteristics and engineering application of red bed soft rock in southwest Shandong Province[J]. Journal of Engineering Geology, 1999, 7(3): 266. (in Chinese) doi: 10.3969/j.issn.1004-9665.1999.03.012
    [3]
    程强. 红层软岩开挖边坡致灾机理及防治技术研究[D]. 成都: 西南交通大学, 2008.

    CHENG Qiang. Study on Disaster Mechanism and Prevention Technology of Slope Excavation in Red Bed Soft Rock[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
    [4]
    陈静, 江权, 冯夏庭, 等. 含初始损伤大理岩的时效变形与破坏试验研究[J]. 工程科学与技术, 2018, 50(5): 27-37.

    CHEN Jing, JIANG Quan, FENG Xiating, et al. Experiment study of time-dependent deformation and failure of original damage marble[J]. Journal of Sichuan University (Engineering Science Edition), 2018, 50(5): 27-37. (in Chinese)
    [5]
    王宇, 艾芊, 王伟, 等. 非贯通裂隙软岩单轴压缩强度特征及贯通机制研究[J]. 水利水电技术, 2018, 49(4): 154-161.

    WANG Yu, AI Qian, WANG Wei, et al. Study on uniaxial compressive strength characteristics and penetration mechanism of soft rock with non-penetrative joints[J]. Water Resources and Hydropower Engineering, 2018, 49(4): 154-161. (in Chinese)
    [6]
    邱士利, 冯夏庭, 张传庆, 等. 深埋硬岩隧洞岩爆倾向性指标RVI的建立及验证[J]. 岩石力学与工程学报, 2011, 30(6): 1126-1141.

    QIU Shili, FENG Xiating, ZHANG Chuanqing, et al. Development and validation of rockburst vulnerability index(rvi) in deep hard rock tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1126-1141. (in Chinese)
    [7]
    郭宏云, 赵健, 柳培玉. 深部软岩与水作用后的强度软化特性及化学分析[J]. 岩石力学与工程学报, 2018, 37(增刊1): 3374-3381.

    GUO Hongyun, ZHAO Jian, LIU Peiyu. Experimental studies and chemical analysis of water on weakening behaviors of deep soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3374-3381. (in Chinese)
    [8]
    黄宏伟, 车平. 泥岩遇水软化微观机理研究[J]. 同济大学学报(自然科学版), 2007, 35(7): 866-870. doi: 10.3321/j.issn:0253-374X.2007.07.002

    HUANG Hongwei, CHE Ping. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science), 2007, 35(7): 866-870. (in Chinese) doi: 10.3321/j.issn:0253-374X.2007.07.002
    [9]
    谢小帅, 陈华松, 肖欣宏, 等. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报, 2019, 27(5): 966-972.

    XIE Xiaoshuai, CHEN Huasong, XIAO Xinhong, et al. Micro-structural characteristics and softening me-chanism of red-bed soft rock under water-rock interac-tion condition[J]. Journal of Engineering Geology, 2019, 27(5): 966-972. (in Chinese)
    [10]
    潘艺, 刘镇, 周翠英. 红层软岩遇水崩解特性试验及其界面模型[J]. 岩土力学, 2017, 38(11): 3231-3239.

    PAN Yi, LIU Zhen, ZHOU Cuiying. Experimental study of disintegration characteristics of red-bed soft rock within water and its interface model[J]. Rock and Soil Mechanics, 2017, 38(11): 3231-3239. (in Chinese)
    [11]
    周翠英, 黄思宇, 刘镇, 等. 红层软岩软化的界面过程及其动力学模型[J]. 岩土力学, 2019, 40(8): 3189-3196, 3206.

    ZHOU Cuiying, HUANG Siyu, LIU Zhen, et al. The interface process and its dynamic model of red-bed soft rock softening[J]. Rock and Soil Mechanics, 2019, 40(8): 3189-3196, 3206. (in Chinese)
    [12]
    刘驰, 刘晓丽, 张东, 等. 软岩软化的水岩界面动力学模型及其演化规律[J]. 岩土工程学报, 2022, 44(12): 2280-2289. doi: 10.11779/CJGE202212015

    LIU Chi, LIU Xiaoli, ZHANG Dong, et al. Dynamic model for water-rock interface of softening of soft rock and its evolution law[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2280-2289. (in Chinese) doi: 10.11779/CJGE202212015
    [13]
    CIANTIA M O, CASTELLANZA R, CROSTA G B, et al. Effects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks[J]. Engineering Geology, 2015, 184: 1-18. doi: 10.1016/j.enggeo.2014.10.024
    [14]
    邓华锋, 王文东, 李建林, 等. 水-岩和重复剪切次序作用下节理岩体损伤效应及模型[J]. 岩土工程学报, 2023, 45(3): 503-511. doi: 10.11779/CJGE20211510

    DENG Huafeng, WANG Wendong, LI Jianlin, et al. Damage effects and model for jointed rock mass under water-rock interaction and repeated shear sequence[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 503-511. (in Chinese) doi: 10.11779/CJGE20211510
    [15]
    张文达. 花岗岩高温酸性环境水-岩作用特征及岩体劣化机制[D]. 成都: 西南交通大学, 2021.

    ZHANG Wenda Characteristics of Water Rock Interaction and Rock Mass Deterioration Mechanism in High-Temperature Acidic Environment of Granite[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
    [16]
    窦子豪, 赵志宏, 高天阳, 等. 水岩作用下花岗岩裂隙剪切力学特性演化规律[J]. 清华大学学报(自然科学版), 2021, 61(8): 792-798.

    DOU Zihao, ZHAO Zhihong, GAO Tianyang, et al. Evolution law of water-rock interaction on the shear behavior of granite fractures[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(8): 792-798. (in Chinese)
    [17]
    王宇, 艾芊, 李建林, 等. 考虑不同影响因素的砂岩损伤特征及其卸荷破坏细观特性研究[J]. 岩土力学, 2019, 40(4): 1341-1350.

    WANG Yu, AI Qian, LI Jianlin, et al. Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties[J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350. (in Chinese)
    [18]
    路凤香, 桑隆康. 岩石学[M]. 北京: 地质出版社, 2002.

    LU Fengxiang, SANG Longkang. Petrology[M]. Beijing: Geological Publishing House, 2002. (in Chinese)
    [19]
    周翠英, 谭祥韶, 邓毅梅, 等. 特殊软岩软化的微观机制研究[J]. 岩石力学与工程学报, 2005, 24(3): 394-400.

    ZHOU Cuiying, TAN Xiangshao, DENG Yimei, et al. Research on softening micro-mechanism of special soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 394-400. (in Chinese)
    [20]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [21]
    谢应齐, 曹杰. 非线性动力学数学方法[M]. 北京: 气象出版社, 2001.

    XIE Yingqi, CAO Jie. Mathematical Method of Nonlinear Dynamics[M]. Beijing: China Meteorological Press, 2001. (in Chinese)
    [22]
    CHO J W, KIM H, JEON S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158-169. doi: 10.1016/j.ijrmms.2011.12.004
  • Related Articles

    [1]Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
    [2]ZHANG Yu, WANG Peng-sheng, LI Da-yong, ZHANG Yu-kun, WEI Kai. Numerical simulation method for hydraulic fracture pressure of perforated surrounding rock under hydraulic coupling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 409-419. DOI: 10.11779/CJGE202203002
    [3]LI Bin, HUANG Da, JIANG Qing-hui, CHEN Guo-qing. Fracture pattern and toughness of layered sandstone influenced by layer orientation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009
    [4]HENG Shuai, YANG Chun-he, ZENG Yi-jin, GUO Yin-tong, WANG Lei, HOU Zhen-kun. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008
    [5]TANG Zhi, PAN Yi-shan, LI Zhong-hua, LI Li-ping, ZHENG Wen-hong. Charge induction mechanism in the process of fracture of coal-rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1156-1160.
    [6]Comparative analyses of model tests and in-situ monitoring of zonal disintegration of rock mass in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [7]BAI Jianbiao, WANG Xiangyu, JIA Mingkui, HOU Chaojiong. Theory and application of supporting in deep soft roadways[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 632-635.
    [8]LI Shuqing, WANG Weijun, PAN Changliang. Numerical analysis on support structure of rock around deep roadway[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 377-381.
    [9]ZHOU Cuiying, MU Chunmei. Relationship between micro-structural characters of fracture surface and strength of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1136-1141.
    [10]ZHU Chuanqu, MIAO Xiexing, XIE Donghai. A model for optimization of support patterns of soft rock roadway based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 708-710.

Catalog

    Article views (356) PDF downloads (100) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return