• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Yayuan, YUAN Shuhang. Constitutive theory of geomaterials saturated with salt solution and its application in clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 223-234. DOI: 10.11779/CJGE20221291
Citation: HU Yayuan, YUAN Shuhang. Constitutive theory of geomaterials saturated with salt solution and its application in clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 223-234. DOI: 10.11779/CJGE20221291

Constitutive theory of geomaterials saturated with salt solution and its application in clay

More Information
  • Received Date: October 18, 2022
  • Available Online: February 05, 2024
  • The chemical activity of ions in salt solution will change the mechanical properties of saturated geomaterials, inducing geotechnical problems such as deterioration or even failure of engineering properties. In order to study the effects of chemical activity on the hydraulic and deformation properties of saturated geomaterials, a constitutive theory framework for geomaterials saturated with salt solution is established based on the mixture theory and thermodynamic solution theory. Different from the previous studies, the solid phase strain is decomposed into the skeleton one caused by porosity change, the matrix one caused by solid material deformation, and the mass exchange one caused by material exchange such as chemical reaction, to highlight the key role of porosity in the hydro-mechanical-chemo multi-field coupling mechanism. This theory adopts the current mass fraction of solute as the chemical state variable to reflect the effects of chemical activity. The free energy and dissipation potential are used to establish the elastic and plastic constitutive relations, respectively. Based on the above theoretical framework, the constitutive relations of solid and fluid phases for the clay saturated with NaCl solution and the seepage-diffusion equation for the solute are established. The constitutive model is validated by the experimental data, which proves that the framework can guide the establishment of the constitutive model for the geomaterials saturated with salt solution.
  • [1]
    陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001

    CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001
    [2]
    WEI C F. A theoretical framework for modeling the chemomechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21.
    [3]
    徐永福. 考虑渗透吸力影响膨润土的修正有效应力及其验证[J]. 岩土工程学报, 2019, 41(4): 631-638. doi: 10.11779/CJGE201904005

    XU Yongfu. Modified effective stress induced by osmotic suction and its validation in volume change and shear strength of bentonite in saline solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 631-638. (in Chinese) doi: 10.11779/CJGE201904005
    [4]
    YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621-2630. doi: 10.1007/s12665-014-3169-x
    [5]
    颜荣涛, 赵续月, 于明波, 等. 盐溶液饱和黏土的等向压缩特性[J]. 岩土力学, 2018, 39(1): 129-138.

    YAN Rongtao, ZHAO Xuyue, YU Mingbo, et al. Isotropic compression characteristics of clayey soil saturated by salty solution[J]. Rock and Soil Mechanics, 2018, 39(1): 129-138. (in Chinese)
    [6]
    DI MAIO C, SANTOLI L, SCHIAVONE P. Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mechanics of Materials, 2004, 36(5/6): 435-451.
    [7]
    SRIDHARAN A. Engineering behavior of clays: influence of mineralogy[C]//Chemo-mechanical Coupling in Clays: From Nano-scale to Engineering Applications. Maratea: Swets and Zeitlinger, 2001.
    [8]
    DO N GUIMARÃES L, GENS A, SÁNCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Géotechnique, 2013, 63(3): 211-234.
    [9]
    DOMINIJANNI A, MANASSERO M, PUMA S. Coupled chemical-hydraulic-mechanical behaviour of bentonites[J]. Géotechnique, 2013, 63(3): 191-205. doi: 10.1680/geot.SIP13.P.010
    [10]
    BENNETHUM L S, MURAD M A, CUSHMAN J H. Macroscale thermodynamics and the chemical potential for swelling porous media[J]. Transport in Porous Media, 2000, 39(2): 187-225. doi: 10.1023/A:1006661330427
    [11]
    HASSANIZADEH M, GRAY W G. General conservation equations for multi-phase systems: 1. Averaging procedure[J]. Advances in Water Resources, 1979, 2: 131-144. doi: 10.1016/0309-1708(79)90025-3
    [12]
    MA T, WEI C, CHEN P, et al. Chemo-mechanical coupling constitutive model for chalk considering chalk–fluid physicochemical interaction[J]. Géotechnique, 2019, 69(4): 308-319. doi: 10.1680/jgeot.17.P.115
    [13]
    LORET B, HUECKEL T, GAJO A. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids and Structures, 2002, 39(10): 2773-2806. doi: 10.1016/S0020-7683(02)00151-8
    [14]
    CHENG A H D. Poroelasticity[M]. Berlin: Springer, 2016.
    [15]
    胡亚元. 饱和多孔介质的超黏弹性本构理论研究[J]. 应用数学和力学, 2016, 37(6): 584-598.

    HU Yayuan. Study on the super viscoelastic constitutive theory for saturated porous media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. (in Chinese)
    [16]
    胡亚元. 基于混合物理论的饱和岩石弹塑性模型[J]. 岩土工程学报, 2020, 42(12): 2161-2169. doi: 10.11779/CJGE202012001

    HU Yayuan. Elastoplastic model for saturated rock based on mixture theory[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2161-2169. (in Chinese) doi: 10.11779/CJGE202012001
    [17]
    BOWEN R M. Theory of Mixtures[M]. Amsterdam: Elsevier, 1976: 1-127.
    [18]
    陈正汉. 固-液-气三相多孔介质相互作用的动力学理论[C]//. 全国首届结构与介质相互作用的理论及其应用学术研讨会文集. 南京: 河海大学出版社, 1993: 134-147.

    CHEN Zhenghan. Dynamics theory of solid-liquid-gas three-phase porous media interaction[C]// Proceedings of the First National Symposium on Theory and Application of Interaction between Structure and Medium. Nanjing: Hohai University Press, 1993: 134-147. (in Chinese)
    [19]
    CHEN Zhenghan. A dynamical theory of interaction of triphase porous media[C]// Proc 2nd lnt Conf on Non-Linear Mechanics. Beijing: Peking Univ Press, 1993: 889-892.
    [20]
    COLLINS I F, HOULSBY G T. Application of thermomechanical principles to the modelling of geotechnical materials[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1997, 453: 1975-2001. doi: 10.1098/rspa.1997.0107
    [21]
    BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J]. International Journal of Solids and Structures, 2006, 43(6): 1764-1786.
    [22]
    陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.

    CHEN Zhenghan. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese)
    [23]
    陈正汉. 岩土力学的公理化理论体系[J]. 应用数学和力学, 1994, 15(10): 901-910.

    CHEN Zhenghan. An axiomatics of geomechanics[J]. Applied Mathematics and Mechanics, 1994, 15(10): 901-910. (in Chinese)
    [24]
    赵成刚, 刘艳. 连续孔隙介质土力学及其在非饱和土本构关系中的应用[J]. 岩土工程学报, 2009, 31(9): 1324-1335.

    ZHAO Chenggang, LIU Yan. Continuum porous medium soil mechanics and its application in constitutive relationship of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1324-1335. (in Chinese)
    [25]
    刘艳, 赵成刚, 蔡国庆. 理性土力学与热力学[M]. 北京: 科学出版社, 2016.

    LIU Yan, ZHAO Chenggang, CAI Guoqing. Rational Soil Mechanics and Thermodynamics[M]. Beijing: Science Press, 2016. (in Chinese)
    [26]
    苏长荪, 谭连城, 刘桂玉. 高等工程热力学[M]. 北京: 高等教育出版社, 1987.

    SU Changsun, TAN Liancheng, LIU Guiyu. Advanced Engineering Thermodynamics[M]. Beijing: Higher Education Press, 1987. (in Chinese)
    [27]
    BOWEN R M. Compressible porous media models by use of the theory of mixtures[J]. International Journal of Engineering Science, 1982, 20(6): 697-735.
    [28]
    陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版社, 2022: 502-509.

    CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture & Building Press, 2022: 502-509. (in Chinese)
    [29]
    李如生. 非平衡态热力学和耗散结构[M]. 北京: 清华大学出版社, 1986.

    LI Rusheng. Non-equilibrium ThermoDynamics and Dissipative Structure[M]. Beijing: Tsinghua University Press, 1986. (in Chinese)
    [30]
    黄筑平. 连续介质力学基础[M]. 2版. 北京: 高等教育出版社, 2012: 83-121.

    HUANG Zhuping. Fundamentals of Continuum Mechanics[M]. 2nd ed. Beijing: Higher Education Press, 2012: 83-121. (in Chinese)
    [31]
    孙德安, 孙文静, 孟德林. 膨胀性非饱和土水力和力学性质的弹塑性模拟[J]. 岩土工程学报, 2010, 32(10): 1505-1512. http://cge.nhri.cn/cn/article/id/8363

    SUN De'an, SUN Wenjing, MENG Delin. Elastoplastic modelling of hydraulic and mechanical behaviour of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1505-1512. (in Chinese) http://cge.nhri.cn/cn/article/id/8363
    [32]
    SIMIONA I, GRIGORAS C G, ROSU A M, et al. Mathematical modelling of density and viscosity of NaCl aqueous solutions[J]. Journal of Agroalimentary Processes and Technologies, 2015, 21(1): 41-52.
  • Cited by

    Periodical cited type(5)

    1. 单毅,平阳泽,袁杰,崔杰,童华炜,李亚东. 基于颗粒尺寸与级配的微生物固化钙质砂最大动剪切模量试验研究. 岩石力学与工程学报. 2024(10): 2455-2465 .
    2. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    3. 熊海斌,余虔,张升,童晨曦,兰鹏,刘光庆. 考虑颗粒破碎的砂土UH模型及其参数反演. 岩土工程学报. 2023(01): 134-143 . 本站查看
    4. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    5. 王永志,王体强,袁晓铭,张雪东,陈卓识. 动力离心试验反演分析砂土模量阻尼比特征与可靠性. 岩石力学与工程学报. 2022(08): 1717-1727 .

    Other cited types(7)

Catalog

    Article views (693) PDF downloads (212) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return