• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647
Citation: CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647

Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures

More Information
  • Received Date: May 17, 2022
  • Available Online: February 23, 2023
  • The particle breakage of sand under high stress is obviously different from that under the normal stress. The existing studies on the evolution rules and models of particle breakage for quartz sand under high stress are relatively limited. A series of consolidation drained (CD) and consolidation undrained (CU) triaxial shear tests are conducted under the confining pressures of 2~8 MPa to investigate the evolution rules of particle breakage for quartz sand and its effects on sand strength. The relationship curves of deviated stress-axial strain under various stress levels are obtained as well as the relative breakage during shear process. Then the evolution rules of particle breakage are analyzed, the Hardin's, Lade's and Wang's particle breakage models are adopted to describe the rules, and the applicability of each model is discussed. Finally, the critical relative breakage of quartz sand that affects sand strength under high pressures is given based on the relationship between the relative breakage and the effective failure internal friction angle.
  • [1]
    XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042. doi: 10.1061/(ASCE)GM.1943-5622.0001987
    [2]
    YU F W. Characteristics of particle breakage of sand in triaxial shear[J]. Powder Technology, 2017, 320: 656-667. doi: 10.1016/j.powtec.2017.08.001
    [3]
    尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. http://www.cgejournal.com/cn/article/id/14932

    YIN Zhenyu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese) http://www.cgejournal.com/cn/article/id/14932
    [4]
    KIKUMOTO M, WOOD D M, RUSSELL A. Particle crushing and deformation behaviour[J]. Soils and Foundations, 2010, 50(4): 547-563. doi: 10.3208/sandf.50.547
    [5]
    郝冬雪, 岳冲, 陈榕, 等. 常压至高压下中砂剪切特性及应力–剪胀关系[J]. 岩土工程学报, 2020, 42(4): 765-772. doi: 10.11779/CJGE202004021

    HAO Dongxue, YUE Chong, CHEN Rong, et al. Shear characteristics and stress-dilation relation of medium sand under normal to high pressures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 765-772. (in Chinese) doi: 10.11779/CJGE202004021
    [6]
    黄茂松, 姚仰平, 尹振宇, 等. 土的基本特性及本构关系与强度理论[J]. 土木工程学报, 2016, 49(7): 9-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607002.htm

    HUANG Maosong, YAO Yangping, YIN Zhenyu, et al. An overview on elementary mechanical behaviors, constitutive modeling and failure criterion of soils[J]. China Civil Engineering Journal, 2016, 49(7): 9-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607002.htm
    [7]
    HYODO M, WU Y, ARAMAKI N, et al. Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures[J]. Canadian Geotechnical Journal, 2017, 54(2): 207-218. doi: 10.1139/cgj-2016-0212
    [8]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [9]
    张季如, 华晨, 罗明星, 等. 三轴排水剪切下钙质砂的颗粒破碎特性[J]. 岩土工程学报, 2020, 42(9): 1593-1602. doi: 10.11779/CJGE202009003

    ZHANG Jiru, HUA Chen, LUO Mingxing, et al. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. (in Chinese) doi: 10.11779/CJGE202009003
    [10]
    INDRARATNA B, SUN Q D, NIMBALKAR S. Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage[J]. Canadian Geotechnical Journal, 2015, 52(1): 73-86. doi: 10.1139/cgj-2013-0361
    [11]
    LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)
    [12]
    吴二鲁, 朱俊高, 陆阳洋, 等. 基于颗粒破碎耗能的粗粒料剪胀方程研究[J]. 岩土工程学报, 2022, 44(5): 898-906. doi: 10.11779/CJGE202205013

    WU Erlu, ZHU Jungao, LU Yangyang, et al. Dilatancy equation for coarse-grained soils incorporating particle breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 898-906. (in Chinese) doi: 10.11779/CJGE202205013
    [13]
    XIAO Y, YUAN Z X, LV Y, et al. Fractal crushing of carbonate and quartz sands along the specimen height under impact loading[J]. Construction and Building Materials, 2018, 182: 188-199. doi: 10.1016/j.conbuildmat.2018.06.112
    [14]
    郭万里, 蔡正银, 武颖利, 等. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703-4710. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm

    GUO Wanli, CAI Zhengyin, WU Yingli, et al. Study on the particle breakage energy and dilatancy of coarse-grained soils[J]. Rock and Soil Mechanics, 2019, 40(12): 4703-4710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm
    [15]
    TENGATTINI A, DAS A, EINAV I. A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation[J]. Géotechnique, 2016, 66(9): 695-710. doi: 10.1680/jgeot.14.P.164
    [16]
    王兆南, 王刚, 叶沁果, 等. 考虑颗粒破碎的钙质砂边界面循环本构模型[J]. 岩土工程学报, 2021, 43(5): 886-892. doi: 10.11779/CJGE202105012

    WANG Zhaonan, WANG Gang, YE Qinguo, et al. Cyclic bounding surface model for carbonate sand incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 886-892. (in Chinese) doi: 10.11779/CJGE202105012
    [17]
    COOP M R, SORENSEN K K, BODAS FREITAS T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.
    [18]
    NANDA S, SIVAKUMAR V, DONOHUE S, et al. Small-strain behaviour and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading[J]. Canadian Geotechnical Journal, 2018, 55(7): 979-987.
    [19]
    UENG T S, CHEN T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1): 65-72.
    [20]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. doi: 10.11779/CJGE201906001

    CAI Zhengyin, HOU Heying, ZHANG Jinxun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) doi: 10.11779/CJGE201906001
    [21]
    张季如, 罗明星, 彭伟珂, 等. 不同应力路径下钙质砂力学特性的排水三轴试验研究[J]. 岩土工程学报, 2021, 43(4): 593-602. doi: 10.11779/CJGE202104001

    ZHANG Jiru, LUO Mingxing, PENG Weike, et al. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. (in Chinese) doi: 10.11779/CJGE202104001
    [22]
    王兆南, 王刚, 叶沁果, 等. 三轴应力路径下珊瑚砂的颗粒破碎模型[J]. 岩土工程学报, 2021, 43(3): 540-546. doi: 10.11779/CJGE202103017

    WANG Zhaonan, WANG Gang, YE Qinguo, et al. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. (in Chinese) doi: 10.11779/CJGE202103017
    [23]
    JIA Y, XU B, CHI S, et al. Particle breakage of rockfill material during triaxial tests under complex stress paths[J]. International Journal of Geomechanics, 2019, 19(12): 04019124.
    [24]
    蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929. doi: 10.11779/CJGE201605019

    CAI Zhengyin, LI Xiaomei, GUAN Yunfei, et al. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese) doi: 10.11779/CJGE201605019
    [25]
    WANG G, WANG Z N, YE Q G, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 04020012.
    [26]
    NEGUSSEY D, WIJEWICKREME W K D, VAID Y P. Constant-volume friction angle of granular materials[J]. Canadian Geotechnical Journal, 1988, 25(1): 50-55.
    [27]
    SADREKARIMI A, OLSON S M. Critical state friction angle of sands[J]. Géotechnique, 2011, 61(9): 771-783.
    [28]
    SADREKARIMI A. Development of A New Ring Shear Apparatus for Investigating the Critical State of Sands[D]. Champaign: University of Illinois at Urbana-Champaign, 2009.
  • Related Articles

    [1]Evolution characteristics of mesoscopic pore structure for coral sand samples based on CT-triaxial test[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231224
    [2]DING Shijia, ZHANG Zhean, FEI Kang. Experimental study on effects of heating-cooling cycles on shear characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 132-135. DOI: 10.11779/CJGE2023S10001
    [3]ZENG Zhangbo, HUANG Hua, MEI Longxi, PEI Zhiyong, ZOU Yi, FANG Huolang. Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160
    [4]WU Er-lu, ZHU Jun-gao, HUANG Wei, LIU Zhong. Evolution law of particle breakage of coarse-grained soil during triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330-2335. DOI: 10.11779/CJGE202012021
    [5]ZHANG Ji-ru, HUA Chen, LUO Ming-xing, ZHANG Bi-wen. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. DOI: 10.11779/CJGE202009003
    [6]ZHAO Fei-xiang, CHI Shi-chun, MI Xiao-fei. Gradation evolution model based on particle breakage characteristics for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1707-1714. DOI: 10.11779/CJGE201909015
    [7]WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020
    [8]GAO Juan, LAI Yuan-ming. Damage and pressure melting analysis of frozen saline soils in process of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. DOI: 10.11779/CJGE201804015
    [9]ZUO Yong-zhen, CHENG Zhan-lin, ZHAO Na. Expansion mechanism of shear bands in phyllite detritus soil by CT technology[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1524-1531. DOI: 10.11779/CJGE201508024
    [10]WANG Zhupin, SHAO Longtan, SUN Yizhen. Study on shear band of fly ash triaxial specimen based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1163-1167.
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (345) PDF downloads (93) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return