Citation: | CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647 |
[1] |
XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042. doi: 10.1061/(ASCE)GM.1943-5622.0001987
|
[2] |
YU F W. Characteristics of particle breakage of sand in triaxial shear[J]. Powder Technology, 2017, 320: 656-667. doi: 10.1016/j.powtec.2017.08.001
|
[3] |
尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. http://www.cgejournal.com/cn/article/id/14932
YIN Zhenyu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese) http://www.cgejournal.com/cn/article/id/14932
|
[4] |
KIKUMOTO M, WOOD D M, RUSSELL A. Particle crushing and deformation behaviour[J]. Soils and Foundations, 2010, 50(4): 547-563. doi: 10.3208/sandf.50.547
|
[5] |
郝冬雪, 岳冲, 陈榕, 等. 常压至高压下中砂剪切特性及应力–剪胀关系[J]. 岩土工程学报, 2020, 42(4): 765-772. doi: 10.11779/CJGE202004021
HAO Dongxue, YUE Chong, CHEN Rong, et al. Shear characteristics and stress-dilation relation of medium sand under normal to high pressures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 765-772. (in Chinese) doi: 10.11779/CJGE202004021
|
[6] |
黄茂松, 姚仰平, 尹振宇, 等. 土的基本特性及本构关系与强度理论[J]. 土木工程学报, 2016, 49(7): 9-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607002.htm
HUANG Maosong, YAO Yangping, YIN Zhenyu, et al. An overview on elementary mechanical behaviors, constitutive modeling and failure criterion of soils[J]. China Civil Engineering Journal, 2016, 49(7): 9-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607002.htm
|
[7] |
HYODO M, WU Y, ARAMAKI N, et al. Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures[J]. Canadian Geotechnical Journal, 2017, 54(2): 207-218. doi: 10.1139/cgj-2016-0212
|
[8] |
HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
|
[9] |
张季如, 华晨, 罗明星, 等. 三轴排水剪切下钙质砂的颗粒破碎特性[J]. 岩土工程学报, 2020, 42(9): 1593-1602. doi: 10.11779/CJGE202009003
ZHANG Jiru, HUA Chen, LUO Mingxing, et al. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. (in Chinese) doi: 10.11779/CJGE202009003
|
[10] |
INDRARATNA B, SUN Q D, NIMBALKAR S. Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage[J]. Canadian Geotechnical Journal, 2015, 52(1): 73-86. doi: 10.1139/cgj-2013-0361
|
[11] |
LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)
|
[12] |
吴二鲁, 朱俊高, 陆阳洋, 等. 基于颗粒破碎耗能的粗粒料剪胀方程研究[J]. 岩土工程学报, 2022, 44(5): 898-906. doi: 10.11779/CJGE202205013
WU Erlu, ZHU Jungao, LU Yangyang, et al. Dilatancy equation for coarse-grained soils incorporating particle breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 898-906. (in Chinese) doi: 10.11779/CJGE202205013
|
[13] |
XIAO Y, YUAN Z X, LV Y, et al. Fractal crushing of carbonate and quartz sands along the specimen height under impact loading[J]. Construction and Building Materials, 2018, 182: 188-199. doi: 10.1016/j.conbuildmat.2018.06.112
|
[14] |
郭万里, 蔡正银, 武颖利, 等. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703-4710. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm
GUO Wanli, CAI Zhengyin, WU Yingli, et al. Study on the particle breakage energy and dilatancy of coarse-grained soils[J]. Rock and Soil Mechanics, 2019, 40(12): 4703-4710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm
|
[15] |
TENGATTINI A, DAS A, EINAV I. A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation[J]. Géotechnique, 2016, 66(9): 695-710. doi: 10.1680/jgeot.14.P.164
|
[16] |
王兆南, 王刚, 叶沁果, 等. 考虑颗粒破碎的钙质砂边界面循环本构模型[J]. 岩土工程学报, 2021, 43(5): 886-892. doi: 10.11779/CJGE202105012
WANG Zhaonan, WANG Gang, YE Qinguo, et al. Cyclic bounding surface model for carbonate sand incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 886-892. (in Chinese) doi: 10.11779/CJGE202105012
|
[17] |
COOP M R, SORENSEN K K, BODAS FREITAS T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.
|
[18] |
NANDA S, SIVAKUMAR V, DONOHUE S, et al. Small-strain behaviour and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading[J]. Canadian Geotechnical Journal, 2018, 55(7): 979-987.
|
[19] |
UENG T S, CHEN T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1): 65-72.
|
[20] |
蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. doi: 10.11779/CJGE201906001
CAI Zhengyin, HOU Heying, ZHANG Jinxun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) doi: 10.11779/CJGE201906001
|
[21] |
张季如, 罗明星, 彭伟珂, 等. 不同应力路径下钙质砂力学特性的排水三轴试验研究[J]. 岩土工程学报, 2021, 43(4): 593-602. doi: 10.11779/CJGE202104001
ZHANG Jiru, LUO Mingxing, PENG Weike, et al. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. (in Chinese) doi: 10.11779/CJGE202104001
|
[22] |
王兆南, 王刚, 叶沁果, 等. 三轴应力路径下珊瑚砂的颗粒破碎模型[J]. 岩土工程学报, 2021, 43(3): 540-546. doi: 10.11779/CJGE202103017
WANG Zhaonan, WANG Gang, YE Qinguo, et al. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. (in Chinese) doi: 10.11779/CJGE202103017
|
[23] |
JIA Y, XU B, CHI S, et al. Particle breakage of rockfill material during triaxial tests under complex stress paths[J]. International Journal of Geomechanics, 2019, 19(12): 04019124.
|
[24] |
蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929. doi: 10.11779/CJGE201605019
CAI Zhengyin, LI Xiaomei, GUAN Yunfei, et al. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese) doi: 10.11779/CJGE201605019
|
[25] |
WANG G, WANG Z N, YE Q G, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 04020012.
|
[26] |
NEGUSSEY D, WIJEWICKREME W K D, VAID Y P. Constant-volume friction angle of granular materials[J]. Canadian Geotechnical Journal, 1988, 25(1): 50-55.
|
[27] |
SADREKARIMI A, OLSON S M. Critical state friction angle of sands[J]. Géotechnique, 2011, 61(9): 771-783.
|
[28] |
SADREKARIMI A. Development of A New Ring Shear Apparatus for Investigating the Critical State of Sands[D]. Champaign: University of Illinois at Urbana-Champaign, 2009.
|
[1] | Evolution characteristics of mesoscopic pore structure for coral sand samples based on CT-triaxial test[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231224 |
[2] | DING Shijia, ZHANG Zhean, FEI Kang. Experimental study on effects of heating-cooling cycles on shear characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 132-135. DOI: 10.11779/CJGE2023S10001 |
[3] | ZENG Zhangbo, HUANG Hua, MEI Longxi, PEI Zhiyong, ZOU Yi, FANG Huolang. Triaxial shear tests on soil-rock mixture and 3D multi-shear bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 644-651. DOI: 10.11779/CJGE20221160 |
[4] | WU Er-lu, ZHU Jun-gao, HUANG Wei, LIU Zhong. Evolution law of particle breakage of coarse-grained soil during triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330-2335. DOI: 10.11779/CJGE202012021 |
[5] | ZHANG Ji-ru, HUA Chen, LUO Ming-xing, ZHANG Bi-wen. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. DOI: 10.11779/CJGE202009003 |
[6] | ZHAO Fei-xiang, CHI Shi-chun, MI Xiao-fei. Gradation evolution model based on particle breakage characteristics for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1707-1714. DOI: 10.11779/CJGE201909015 |
[7] | WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020 |
[8] | GAO Juan, LAI Yuan-ming. Damage and pressure melting analysis of frozen saline soils in process of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. DOI: 10.11779/CJGE201804015 |
[9] | ZUO Yong-zhen, CHENG Zhan-lin, ZHAO Na. Expansion mechanism of shear bands in phyllite detritus soil by CT technology[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1524-1531. DOI: 10.11779/CJGE201508024 |
[10] | WANG Zhupin, SHAO Longtan, SUN Yizhen. Study on shear band of fly ash triaxial specimen based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1163-1167. |