Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Juan, LAI Yuan-ming. Damage and pressure melting analysis of frozen saline soils in process of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. DOI: 10.11779/CJGE201804015
Citation: GAO Juan, LAI Yuan-ming. Damage and pressure melting analysis of frozen saline soils in process of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. DOI: 10.11779/CJGE201804015

Damage and pressure melting analysis of frozen saline soils in process of triaxial compression tests

More Information
  • Received Date: March 14, 2017
  • Published Date: April 24, 2018
  • The mechanical properties, such as damage and pressure melting, have significant influences on the strength and deformation behaviors of the frozen saline soils in the process of triaxial compression tests. In order to analyze the change laws of damage evolution and pressure melting variation, a series of triaxial shear loading-unloading-reloading tests and CT scanning tests are carried out for Delhi frozen saline soils at -15℃. The results show that the damage variable is influenced by hydrostatic pressure. When the hydrostatic pressure is between 1 MPa and 12 MPa, the damage variable increases with pressure, and when hydrostatic pressure is more than 12 MPa, with the increase of the hydrostatic pressure, the damage variable shows a decreasing trend. Meanwhile, the definitions of pressure melting thresholdpsand the corresponding hydrostatic pressure valuepmwhen the pressure melting variable reaches the maximum value are given. The pressure melting is hardly existent in the sample when pressure is less than the threshold. When the pressure is betweenpsandpm, the pressure melting variables can be expressed by the parabola equation. And if the hydrostatic pressure exceedspm, the pressure melting variable reaches the maximum valueλm. Besides, the hydrostatic pressure corresponding to the maximum value of the pressure melting variables almost equals the hydrostatic pressure when the damage variable gets its maximum.
  • [1]
    徐敩祖, 王家澄, 张立新, 等. 土体的冻胀和盐胀机理[M]. 北京: 科学出版社, 1995.
    (XU Xiao-zu, WANG Jia-cheng, ZHANG Li-xin, et al.Mechanisms of frost heaving and salt expansion of soils[M]. Beijing: Science Press, 1995. (in Chinese))
    [2]
    王遵亲, 祝寿泉, 俞仁培. 中国盐渍土[M]. 北京: 科学出版社, 1993.
    (WANG Zun-qin, ZHU Shou-quan, YU Ren-pei.Salty soil in China[M]. Beijing: Science Press, 1993. (in Chinese))
    [3]
    陈肖柏, 刘建坤, 刘鸿绪, 等. 土的冻结作用与地基[M]. 北京: 科学出版社, 2006.
    (CHEN Xiao-bai, LIU Jian-kun, LIU Hong-xu, et al.Frost action of soil and foundation engineering[M]. Beijing: Science Press, 2006. (in Chinese))
    [4]
    MOKNI N, OLIVELLA S,LI X, et al.Deformation induced by dissolution of salts in porous media[J]. Physics and Chemistry of the Earth, 2008, 33: 436-443.
    [5]
    蔡正银, 吴志强, 黄英豪, 等. 含水率和含盐量对冻土无侧限抗压强度影响的试验研究[J]. 岩土工程学报, 2014, 36(9): 1580-1586.
    (CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, et al.Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. (in Chinese))
    [6]
    陈锦, 李东庆, 邴慧, 等. 含盐量对冻结粉土单轴抗压强度影响的试验研究[J]. 工程力学, 2013, 30(12): 18-23.
    (CHEN Jin, LI Dong-qing, BING Hui, et al.The experimental study on the uniaxial compressive strength of frozen silt with different salt content[J]. Engineering Mechanics, 2013, 30(12): 18-23. (in Chinese))
    [7]
    LAI Y M, LIAO M K, HU K.A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113.
    [8]
    杨更社, 孙钧, 谢定义, 等.岩石材料损伤变量与CT数间的关系分析[J]. 力学与实践,1998, 20: 47-49.
    (YANG Geng-she, SUN Jun, XIE Ding-yi, et al.Analysis of the relation between the damage variable and CT value of rock material[J]. Mechanics and Engineering, 1998, 20: 47-49. (in Chinese))
    [9]
    马巍, 吴紫汪, 蒲毅彬, 等. 冻土三轴蠕变过程中结构变化的CT动态监测[J]. 冰川冻土, 1997, 19(1): 52-57.
    (MA Wei, WU Zi-wang, PU Yi-pin, et al.Monitoring the change of structures in frozen soil in triaxial creep process by CT[J]. Journal of Glaciology and Geocrylolgy, 1997, 19(1): 52-57. (in Chinese))
    [10]
    任建喜, 葛修润, 蒲毅彬, 等. 节理岩石卸载损伤破坏过程CT实时检测[J]. 岩土力学, 2001, 23(5): 575-578.
    (REN Jian-xi, GE Xiu-run, PU Yi-bin.Real-time CT test of damage failure process of jointed rocksample in unloading confining pressure[J]. Rock and Soil Mechanics, 2001, 23(5): 575-578. (in Chinese))
    [11]
    葛修润, 任建喜, 蒲毅彬, 等. 岩土损伤力学宏细观试验研究[M]. 北京: 科学出版社, 2004.
    (GE Xiu-run, REN Jian-xi, PU Yi-bin, et al.Macro meso experimental study on mechanics of rock and soil damage[M]. Beijing: Science Press, 2004. (in Chinese))
    [12]
    孙红, 葛修润, 牛富俊, 等. 上海粉质粘土的三轴CT实时细观试验[J]. 岩石力学与工程学报, 2005, 24(24): 4559-4564.
    (SUN Hong, GE Xiu-run, NIU Fu-jun, et al.Real-time CT meso-testing on Shanghai silty clay subjected to triaxial loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4559-4564. (in Chinese))
    [13]
    孙星亮, 汪稔, 胡明鉴. 冻土三轴剪切过程中细观损伤演化CT动态试验[J]. 岩土力学,2005, 26(8): 52-57.
    (SUN Xing-liang, WANG Ren, HU Ming-jian.A CT-timely experimental study on meso-scopic structural damage development of frozen soil under triaxial shearing[J]. Rock and Soil Mechanics, 2005, 26(8): 52-57. (in Chinese))
    [14]
    CHAMBERLAIN E, GROVES C, PERHAM J.The mechanical behavior of frozen earth materials under high pressure triaxial test conditions[J]. Géotechnique, 1972, 22(3): 469-483.
    [15]
    PARAMESARAN V R, JONES S J.Triaxial testing of frozen sand[J]. Journal of Glaciology, 1981, 27: 147-155.
    [16]
    ALKIRE B D, ANDERSLAND O B.The effect of confining pressure on the mechanical properties of sand-ice materials[J]. Journal of Glaciology, 1973, 12: 469-481.
    [17]
    余群, 张招祥, 沈震亚, 等. 冻土的瞬态变形和强度特性[J]. 冰川冻土, 1993, 15(2): 258-265.
    (YU Qun, ZHANG Zhao-xiang, SHEN Zheng-ya, et al.Instantaneous-state deformation and strength behavior of frozen soil[J]. Journal of Glaciology and Geocryology, 1993, 15(2): 258-265. (in Chinese))
    [18]
    MA W, WU Z W, ZHANG L X, et al.Analyses of process on the strength decrease in frozen soils under high confining pressures[J]. Cold Regions Science and Technology, 1999, 29: 1-7.
    [19]
    牛亚强, 王旭, 廖孟柯, 等. 冻结改良黄土三轴强度和变形特性试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 198-203.
    (NIU Ya-qiang, WANG Xu, LIAO Meng-ke, et al.Experimental study on triaxial strength and deformation characteristics of frozen-improved loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 198-203. (in Chinese))
    [20]
    GB50324—2001冻土工程地质勘察规范[S]. 2001. (GB50324—2001 Code for engineering geological investigation of frozen ground[S]. 2001. (in Chinese))
    [21]
    徐湘田. 冻土力学性质的试验研究与本构模拟[D]. 兰州: 中科院寒区旱区环境与工程研究所, 2012.
    (XU Xiang-tian.Laboratory investigation on mechanical properties and constitutive modeling for frozen soil[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Institute, Chinese Academy of Sciences, 2012. (in Chinese))
    [22]
    杨更社, 张长庆. 岩体损伤及检测[M]. 西安: 陕西科学技术出版社, 1998.
    (YANG Geng-she, ZHANG Chang-qing.Rock mass damage and detection[M]. Xi'an: Shaanxi Science & Technology Press, 1998. (in Chinese))
    [23]
    陈世杰, 赵淑萍, 马巍, 等. 利用CT扫描技术进行冻土研究的现状和展望[J]. 冰川冻土, 2013, 35(1): 193-200.
    (CHEN Shi-jie, ZHAO Shu-ping, MA Wei, et al.Studying frozen soil with CT technology: present studies and prospects[J]. Journal of Glaciology and Geocrylolgy, 2013, 35(1): 193-200. (in Chinese))
    [24]
    介万奇. 晶体生长原理与技术[M]. 北京: 科学出版社, 2010.
    (JIE Wan-qi.Principle and technology of crystal growth[M]. Beijing: Science Press, 2010. (in Chinese))
  • Cited by

    Periodical cited type(15)

    1. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    2. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
    3. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    4. 张化进,吴顺川,李兵磊,赵宇松. 基于高斯过程回归的岩石抗剪强度参数不确定性估测. 岩土力学. 2024(S1): 415-423 .
    5. 贾玉博,杨宏伟,粟晓玲,褚江东,徐吉海. 基于水代谢和水循环理论的石羊河流域水资源承载力评价. 水资源保护. 2024(05): 86-94+157 .
    6. 李军. 基于城市级实景三维模型快速构建的方法. 北京测绘. 2024(10): 1437-1442 .
    7. 冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 .
    8. 李宏宝. 公路工程中软土路基换填施工技术研究. 科学技术创新. 2023(12): 174-177 .
    9. 崔瑜瑜,吴立鹏,沈兴华,王兴召,秦亚琼,刘杰,卢正,吴磊. 粉质黏土基坑卸荷隆起变形的简化计算方法. 岩土力学. 2023(05): 1425-1434 .
    10. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
    11. 宋超,赵腾远,许领. 基于贝叶斯高斯过程回归与模型选择的岩石单轴抗压强度估计方法. 岩土工程学报. 2023(08): 1664-1673 . 本站查看
    12. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .
    14. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .
    15. 王建强. 基于泊松曲线法的市政道路软土路基处理方法研究. 工程技术研究. 2022(20): 41-43 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return