Citation: | JIANG Jiawei, XU Chengshun, DU Xiuli, CHEN Guoxing, XU Zigang. Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 318-326. DOI: 10.11779/CJGE20211498 |
[1] |
FEMA-P58-1. Seismic Performance Assessment of Buildings (volume 1—Methodology)[R]. Washington D C: Federal Emergency Management Agency, 2018.
|
[2] |
GHOSH S, GHOSH S, CHAKRABORTY S. Seismic fragility analysis in the probabilistic performance-based earthquake engineering framework: an overview[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2021, 13(1): 122-135. doi: 10.1007/s12572-017-0200-y
|
[3] |
MACKIE K, STOJADINOVIĆ B. Seismic demands for performance-based design of bridges[M]. Berkeley: Pacific Earthquake Engineering Research Center, 2003.
|
[4] |
HARIRI-ARDEBILI M A, SAOUMA V E. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structural Safety, 2016, 59: 67-85. doi: 10.1016/j.strusafe.2015.12.001
|
[5] |
PADGETT J E, NIELSON B G, DESROCHES R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(5): 711-725.
|
[6] |
GUO J J, ALAM M S, WANG J Q, et al. Optimal intensity measures for probabilistic seismic demand models of a cable-stayed bridge based on generalized linear regression models[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106024. doi: 10.1016/j.soildyn.2019.106024
|
[7] |
KHOSRAVIKIA F, CLAYTON P. Updated evaluation metrics for optimal intensity measure selection in probabilistic seismic demand models[J]. Engineering Structures, 2020, 202: 109899. doi: 10.1016/j.engstruct.2019.109899
|
[8] |
PEJOVIC J, SERDAR N, PEJOVIĆ R. Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings[J]. Earthq Struct, 2017, 13(3): 221-30.
|
[9] |
周颖, 苏宁粉, 吕西林. 高层建筑结构增量动力分析的地震动强度参数研究[J]. 建筑结构学报, 2013, 34(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302007.htm
ZHOU Ying, SU Ningfen, LÜ Xilin. Study on intensity measure of incremental dynamic analysis for high-rise structures[J]. Journal of Building Structures, 2013, 34(2): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302007.htm
|
[10] |
DU A, PADGETT J E, SHAFIEEZADEH A. A posteriori optimal intensity measures for probabilistic seismic demand modeling[J]. Bulletin of Earthquake Engineering, 2019, 17(2): 681-706. doi: 10.1007/s10518-018-0484-8
|
[11] |
HUANG Z K, PITILAKIS K, ARGYROUDIS S, et al. Selection of optimal intensity measures for fragility assessment of circular tunnels in soft soil deposits[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106724. doi: 10.1016/j.soildyn.2021.106724
|
[12] |
张成明, 钟紫蓝, 甄立斌, 等. 适用于圆形隧道损伤评价的地震动强度指标研究[J]. 工程力学, 2021, 38(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101011.htm
ZHANG Chengming, ZHONG Zilan, ZHEN Libin, et al. Seismic intensity measures for the damage evaluation of circular tunnels[J]. Engineering Mechanics, 2021, 38(1): 100-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101011.htm
|
[13] |
赵密, 郭梦园, 钟紫蓝, 等. 面向地下结构的最优地震动峰值指标随埋深变化规律[J]. 地震学报, 2022, 44(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202201003.htm
ZHAO Mi, GUO Mengyuan, ZHONG Zilan, et al. Variation law of optimal seismic peak intensity measures for underground structures with burial depth[J]. Acta Seismologica Sinica, 2022, 44(1): 15-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202201003.htm
|
[14] |
HOSSEIN E, FATEMEH J. Selection of seismic intensity measures for prescribed limit states using alternative nonlinear dynamic analysis methods[J]. Earthquake Engineering & Structural Dynamics, 2020, 50(5): 1235-1250.
|
[15] |
张佩, 路德春, 杜修力, 等. 深埋隧道与浅埋隧道划分方法研究[J]. 岩土工程学报, 2013, 35(增刊2): 422-427. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15419.shtml
ZHANG Pei, LU Dechun, DU Xiuli, et al. Division method for deep and shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 422-427. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15419.shtml
|
[16] |
CORNELL C A, JALAYER F, HAMBURGER R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4): 526-533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
|
[17] |
TSINIDIS G, PITILAKIS K, TRIKALIOTI A D. Numerical simulation of round robin numerical test on tunnels using a simplified kinematic hardening model[J]. Acta Geotechnica, 2014, 9(4): 641-659. doi: 10.1007/s11440-013-0293-9
|
[18] |
HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
|
[19] |
庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17665.shtml
ZHUANG Haiyang, REN Jiawei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17665.shtml
|
[20] |
杜修力, 蒋家卫, 许紫刚, 等. 浅埋矩形框架地铁车站结构抗震性能指标标定研究[J]. 土木工程学报, 2019, 52(10): 111-119, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm
DU Xiuli, JIANG Jiawei, XU Zigang, et al. Study on quantification of seismic performance index for rectangular frame subway station structure[J]. China Civil Engineering Journal, 2019, 52(10): 111-119, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm
|
[21] |
DU X L, JIANG J W, EL NAGGAR M H, et al. Interstory drift ratio associated with performance objectives for shallow-buried multistory and span subway stations in inhomogeneous soil profiles[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 655-672.
|
[22] |
崔臻, 盛谦, 冷先伦, 等. 基于增量动力分析的大型地下洞室群性能化地震动力稳定性评估[J]. 岩石力学与工程学报, 2012, 31(4): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204009.htm
CUI Zhen, SHENG Qian, LENG Xianlun, et al. Performance-based seismic stability assessment of large underground cavern group with incremental dynamic analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 703-712. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204009.htm
|
[23] |
钟紫蓝, 申轶尧, 郝亚茹, 等. 基于IDA方法的两层三跨地铁地下结构地震易损性分析[J]. 岩土工程学报, 2020, 42(5): 916-924. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18204.shtml
ZHONG Zilan, SHEN Yiyao, HAO Yaru, et al. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18204.shtml
|
[24] |
VAMVATSIKOS DIMITRIOS, CORNELL C ALLIN. Seismic Performance, Capacity and Reliability of Structures as Seen Through Incremental Dynamic Analysis[D]. Stanford University Stanford, CA, USA, 2002.
|
[25] |
VAMVATSIKOS D, CORNELL C A. Applied incremental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2): 523-553.
|
[26] |
VAMVATSIKOS D, FRAGIADAKIS M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty[J]. Earthquake Engineering & Structural Dynamics, 2009: 2010, 39(2): 141-63.
|
[27] |
廖振鹏, 刘晶波. 离散网格中的弹性波动(Ⅰ)[J]. 地震工程与工程振动, 1986, 6(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198602000.htm
LIAO Zhenpeng, LIU Jingbo. Elastic wave motion in discrete grids[J]. Earthquake Engineering and Engineering Vibration, 1986, 6(2): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198602000.htm
|
[28] |
杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
DU Xiuli, MA Chao, LU Dechun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
|
[29] |
DU X, MA C, LU D C, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads [J]. China Civil Engineering Journal, 2017, 50(1): 53-62.
|
[30] |
HUO H, BOBET A, FERNÁNDEZ G, et al. Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai Station[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1522-1533.
|
[31] |
ARGYROUDIS S, TSINIDIS G, GATTI F, et al. Effects of SSI and lining corrosion on the seismic vulnerability of shallow circular tunnels[J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 244-256.
|
[32] |
HLEIBIEH J, WEGENER D, HERLE I. Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model[J]. Acta Geotechnica, 2014, 9(4): 631-640.
|
[33] |
LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
|
[34] |
BESSELING J F. A theory of elastic, plastic, and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep[J]. Journal of Applied Mechanics, 1958, 25(4): 529-536.
|
[35] |
赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16909.shtml
ZHAO Dingfeng, RUAN Bin, CHEN Guoxing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16909.shtml
|
[36] |
CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595-1611.
|
[37] |
FEMA-P695. Quantifcation of Building Seismic Performance Factors[R]. Washington D C: Federal Emergency Management Agency, 2009.
|
[1] | TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030 |
[2] | ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008 |
[3] | XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024 |
[4] | HU Ya-yuan, DING Pan. Three-dimensional rheological model for double-yield surface based on equivalent time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 53-62. DOI: 10.11779/CJGE202001006 |
[5] | ZHANG Peng-wei, HU Li-ming, Meegoda Jay N, Celia Michael A. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. DOI: 10.11779/CJGE202001004 |
[6] | HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023 |
[7] | GAO Guang-yun, SHI Chao, CHEN Qing-sheng. A predictive model on equivalent number of strain cycles for earthquake loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2040-2044. DOI: 10.11779/CJGE201511014 |
[8] | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[9] | SHAO Shengjun, WANG Ting, YU Qinggao. Equivalent consolidation deformation properties and one-dimensional analysis method of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1037-1045. |
[10] | ZHANG Yujun. Equivalent model and numerical analysis and laboratory test for jointed rockmasses[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 29-32. |