• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Jiawei, XU Chengshun, DU Xiuli, CHEN Guoxing, XU Zigang. Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 318-326. DOI: 10.11779/CJGE20211498
Citation: JIANG Jiawei, XU Chengshun, DU Xiuli, CHEN Guoxing, XU Zigang. Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 318-326. DOI: 10.11779/CJGE20211498

Optimal index of earthquake intensity measures for seismic design of underground frame structure of shallow-buried subway station

More Information
  • Received Date: December 24, 2021
  • Available Online: February 23, 2023
  • The optimal index of earthquake intensity measures required in the probabilistic seismic demand model for seismic design of the underground frame structure of shallow-buried subway station is studied. Based on the ABAQUS/Standard platform, the two-dimension model for an underground frame structure is established. The seismic responses of three subway station cross-sections are obtained by using the nonlinear dynamic time-history analysis in term of 22 far-field earthquake records. The peaks of inter-story drift ratios are obtained and selected as the structural damage measure, and 15 candidate intensity measures (IMs) are examined based on the characteristics of efficiency, practicality, proficiency and sufficiency. The results show that PGA is an optimal IM for the probabilistic seismic demand model for the underground frame structure of shallow-buried subway station, whereas the PGV or the velocity response spectrum is an alternative IM. However, the PGD, root-square of displacement, root-mean-square of velocity and root-mean-square of displacement are failed in the tests on the sufficiency, in which they are not appropriate to the probabilistic seismic demand analysis for the underground frame structure of shallow-buried subway station. The findings may provide a helpful guide to the performance-based seismic design of underground structure and to the developing and improving of the determination method of optimal IMs of the existing probabilistic seismic demand model for shallow-buried underground structure.
  • [1]
    FEMA-P58-1. Seismic Performance Assessment of Buildings (volume 1—Methodology)[R]. Washington D C: Federal Emergency Management Agency, 2018.
    [2]
    GHOSH S, GHOSH S, CHAKRABORTY S. Seismic fragility analysis in the probabilistic performance-based earthquake engineering framework: an overview[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2021, 13(1): 122-135. doi: 10.1007/s12572-017-0200-y
    [3]
    MACKIE K, STOJADINOVIĆ B. Seismic demands for performance-based design of bridges[M]. Berkeley: Pacific Earthquake Engineering Research Center, 2003.
    [4]
    HARIRI-ARDEBILI M A, SAOUMA V E. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structural Safety, 2016, 59: 67-85. doi: 10.1016/j.strusafe.2015.12.001
    [5]
    PADGETT J E, NIELSON B G, DESROCHES R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(5): 711-725.
    [6]
    GUO J J, ALAM M S, WANG J Q, et al. Optimal intensity measures for probabilistic seismic demand models of a cable-stayed bridge based on generalized linear regression models[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106024. doi: 10.1016/j.soildyn.2019.106024
    [7]
    KHOSRAVIKIA F, CLAYTON P. Updated evaluation metrics for optimal intensity measure selection in probabilistic seismic demand models[J]. Engineering Structures, 2020, 202: 109899. doi: 10.1016/j.engstruct.2019.109899
    [8]
    PEJOVIC J, SERDAR N, PEJOVIĆ R. Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings[J]. Earthq Struct, 2017, 13(3): 221-30.
    [9]
    周颖, 苏宁粉, 吕西林. 高层建筑结构增量动力分析的地震动强度参数研究[J]. 建筑结构学报, 2013, 34(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302007.htm

    ZHOU Ying, SU Ningfen, LÜ Xilin. Study on intensity measure of incremental dynamic analysis for high-rise structures[J]. Journal of Building Structures, 2013, 34(2): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302007.htm
    [10]
    DU A, PADGETT J E, SHAFIEEZADEH A. A posteriori optimal intensity measures for probabilistic seismic demand modeling[J]. Bulletin of Earthquake Engineering, 2019, 17(2): 681-706. doi: 10.1007/s10518-018-0484-8
    [11]
    HUANG Z K, PITILAKIS K, ARGYROUDIS S, et al. Selection of optimal intensity measures for fragility assessment of circular tunnels in soft soil deposits[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106724. doi: 10.1016/j.soildyn.2021.106724
    [12]
    张成明, 钟紫蓝, 甄立斌, 等. 适用于圆形隧道损伤评价的地震动强度指标研究[J]. 工程力学, 2021, 38(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101011.htm

    ZHANG Chengming, ZHONG Zilan, ZHEN Libin, et al. Seismic intensity measures for the damage evaluation of circular tunnels[J]. Engineering Mechanics, 2021, 38(1): 100-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101011.htm
    [13]
    赵密, 郭梦园, 钟紫蓝, 等. 面向地下结构的最优地震动峰值指标随埋深变化规律[J]. 地震学报, 2022, 44(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202201003.htm

    ZHAO Mi, GUO Mengyuan, ZHONG Zilan, et al. Variation law of optimal seismic peak intensity measures for underground structures with burial depth[J]. Acta Seismologica Sinica, 2022, 44(1): 15-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202201003.htm
    [14]
    HOSSEIN E, FATEMEH J. Selection of seismic intensity measures for prescribed limit states using alternative nonlinear dynamic analysis methods[J]. Earthquake Engineering & Structural Dynamics, 2020, 50(5): 1235-1250.
    [15]
    张佩, 路德春, 杜修力, 等. 深埋隧道与浅埋隧道划分方法研究[J]. 岩土工程学报, 2013, 35(增刊2): 422-427. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15419.shtml

    ZHANG Pei, LU Dechun, DU Xiuli, et al. Division method for deep and shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 422-427. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15419.shtml
    [16]
    CORNELL C A, JALAYER F, HAMBURGER R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4): 526-533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
    [17]
    TSINIDIS G, PITILAKIS K, TRIKALIOTI A D. Numerical simulation of round robin numerical test on tunnels using a simplified kinematic hardening model[J]. Acta Geotechnica, 2014, 9(4): 641-659. doi: 10.1007/s11440-013-0293-9
    [18]
    HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [19]
    庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17665.shtml

    ZHUANG Haiyang, REN Jiawei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17665.shtml
    [20]
    杜修力, 蒋家卫, 许紫刚, 等. 浅埋矩形框架地铁车站结构抗震性能指标标定研究[J]. 土木工程学报, 2019, 52(10): 111-119, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm

    DU Xiuli, JIANG Jiawei, XU Zigang, et al. Study on quantification of seismic performance index for rectangular frame subway station structure[J]. China Civil Engineering Journal, 2019, 52(10): 111-119, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201910012.htm
    [21]
    DU X L, JIANG J W, EL NAGGAR M H, et al. Interstory drift ratio associated with performance objectives for shallow-buried multistory and span subway stations in inhomogeneous soil profiles[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 655-672.
    [22]
    崔臻, 盛谦, 冷先伦, 等. 基于增量动力分析的大型地下洞室群性能化地震动力稳定性评估[J]. 岩石力学与工程学报, 2012, 31(4): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204009.htm

    CUI Zhen, SHENG Qian, LENG Xianlun, et al. Performance-based seismic stability assessment of large underground cavern group with incremental dynamic analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 703-712. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204009.htm
    [23]
    钟紫蓝, 申轶尧, 郝亚茹, 等. 基于IDA方法的两层三跨地铁地下结构地震易损性分析[J]. 岩土工程学报, 2020, 42(5): 916-924. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18204.shtml

    ZHONG Zilan, SHEN Yiyao, HAO Yaru, et al. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18204.shtml
    [24]
    VAMVATSIKOS DIMITRIOS, CORNELL C ALLIN. Seismic Performance, Capacity and Reliability of Structures as Seen Through Incremental Dynamic Analysis[D]. Stanford University Stanford, CA, USA, 2002.
    [25]
    VAMVATSIKOS D, CORNELL C A. Applied incremental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2): 523-553.
    [26]
    VAMVATSIKOS D, FRAGIADAKIS M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty[J]. Earthquake Engineering & Structural Dynamics, 2009: 2010, 39(2): 141-63.
    [27]
    廖振鹏, 刘晶波. 离散网格中的弹性波动(Ⅰ)[J]. 地震工程与工程振动, 1986, 6(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198602000.htm

    LIAO Zhenpeng, LIU Jingbo. Elastic wave motion in discrete grids[J]. Earthquake Engineering and Engineering Vibration, 1986, 6(2): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198602000.htm
    [28]
    杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    DU Xiuli, MA Chao, LU Dechun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
    [29]
    DU X, MA C, LU D C, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads [J]. China Civil Engineering Journal, 2017, 50(1): 53-62.
    [30]
    HUO H, BOBET A, FERNÁNDEZ G, et al. Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai Station[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1522-1533.
    [31]
    ARGYROUDIS S, TSINIDIS G, GATTI F, et al. Effects of SSI and lining corrosion on the seismic vulnerability of shallow circular tunnels[J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 244-256.
    [32]
    HLEIBIEH J, WEGENER D, HERLE I. Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model[J]. Acta Geotechnica, 2014, 9(4): 631-640.
    [33]
    LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    [34]
    BESSELING J F. A theory of elastic, plastic, and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep[J]. Journal of Applied Mechanics, 1958, 25(4): 529-536.
    [35]
    赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16909.shtml

    ZHAO Dingfeng, RUAN Bin, CHEN Guoxing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16909.shtml
    [36]
    CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595-1611.
    [37]
    FEMA-P695. Quantifcation of Building Seismic Performance Factors[R]. Washington D C: Federal Emergency Management Agency, 2009.
  • Related Articles

    [1]TANG Yang, ZHENG Ming-fei, SHI Shi-yong. Model tests on thermal response of phase-change pile in saturated silt foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 139-142. DOI: 10.11779/CJGE2022S2030
    [2]ZENG Zhao-jun, TANG Chao-sheng, CHENG Qing, AN Ni, SHI Bin. Influences of water phase change/migration factors in hydro-thermal coupling model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 40-45. DOI: 10.11779/CJGE2022S1008
    [3]XIAO Ze-an, HOU Zhen-rong, DONG Xiao-qiang. Phase transition of pore solution in saline soil during cooling process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1174-1180. DOI: 10.11779/CJGE202006024
    [4]HU Ya-yuan, DING Pan. Three-dimensional rheological model for double-yield surface based on equivalent time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 53-62. DOI: 10.11779/CJGE202001006
    [5]ZHANG Peng-wei, HU Li-ming, Meegoda Jay N, Celia Michael A. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. DOI: 10.11779/CJGE202001004
    [6]HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023
    [7]GAO Guang-yun, SHI Chao, CHEN Qing-sheng. A predictive model on equivalent number of strain cycles for earthquake loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2040-2044. DOI: 10.11779/CJGE201511014
    [8]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [9]SHAO Shengjun, WANG Ting, YU Qinggao. Equivalent consolidation deformation properties and one-dimensional analysis method of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1037-1045.
    [10]ZHANG Yujun. Equivalent model and numerical analysis and laboratory test for jointed rockmasses[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 29-32.
  • Cited by

    Periodical cited type(3)

    1. 裴书锋,郝文锋,樊义林,陈浩,李文涛. 大型水利水电工程锚固系统运行状况分析. 长江科学院院报. 2024(02): 142-150 .
    2. 苏都都,范勇,吴进高,杨广栋,冷振东. 穿越断层破碎带深埋洞室爆破开挖围岩破坏机理研究进展. 三峡大学学报(自然科学版). 2024(04): 25-34 .
    3. 周嵩,潘岳,刘永胜,谢韬,张理蒙,张继超. 极高地应力破碎地层斜井进正洞力学行为分析及施工优化研究. 现代隧道技术. 2024(04): 142-150 .

    Other cited types(4)

Catalog

    Article views (258) PDF downloads (76) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return