• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhiguo, CHEN Jie, ZHU Zhengguo, WEI Gang, WU Zhongteng, LU Zheng. Longitudinal deformations of existing discontinuous tunnels induced by shield tunneling based on Kerr foundation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2238-2247. DOI: 10.11779/CJGE20221012
Citation: ZHANG Zhiguo, CHEN Jie, ZHU Zhengguo, WEI Gang, WU Zhongteng, LU Zheng. Longitudinal deformations of existing discontinuous tunnels induced by shield tunneling based on Kerr foundation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2238-2247. DOI: 10.11779/CJGE20221012

Longitudinal deformations of existing discontinuous tunnels induced by shield tunneling based on Kerr foundation model

More Information
  • Received Date: August 18, 2022
  • Available Online: March 16, 2023
  • At present, the theoretical researches on the structural deformation of the existing tunnels induced by shield excavation generally regard the existing tunnels as the Euler Bernoulli beam resting on the Winkler foundation without taking into account the effects of non-linear shear deformation of the foundations and shear deformation of the segments, especially the mechanical effects of the existence of circumferential joints of the tunnels. Firstly, the Loganathan and Poulos formula is used to calculate the vertical displacements of soils at the axis of the existing tunnel caused by shield under-crossing excavation. Then, the existing tunnel is regarded as a Timoshenko beam connected by circumferential joints and resting on the Kerr foundation model. The finite difference method is used to calculate the longitudinal deformations of the existing tunnel. Finally, the engineering monitoring data are used to compare and verify the theoretical solutions by the proposed method, and a good agreement is obtained. In addition, the parameter analysis is carried out for the stiffness influence parameters of elastic modulus of soil layer, equivalent bending stiffness and equivalent shear stiffness of the existing tunnel. The results of the analysis show that with the increase in the modulus of elasticity of the soil and the decrease in the equivalent flexural stiffness of the existing tunnel, the displacements of the existing tunnel, the relative turning angles of the circumferential joint and the bending moments at the segment and circumferential joint increase. As the equivalent shear stiffness of the existing tunnel increases, the displacements of the existing tunnel decrease, while the relative turning angles of the circumferential joint and the bending moments at the segment and circumferential joint increase. The relative turning angles of the circumferential joint and the bending moments at the segment and circumferential joint tend to decrease and then increase with the increasing distance from the axis of the new tunnel. When the stiffness discount factor of the circumferential joint of the existing tunnel increases, the bending moments at both the segment and circumferential joint increase, while the tunnel displacements and relative turning angles of the circumferential joint decrease.
  • [1]
    CLAYTON C R I, VAN DER BERG J P, THOMAS A H. Monitoring and displacements at Heathrow Express Terminal 4 station tunnels[J]. Géotechnique, 2006, 56(5): 323-334. doi: 10.1680/geot.2006.56.5.323
    [2]
    MOHAMAD H, BENNETT P J, SOGA K, et al. Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement[J]. Géotechnique, 2010, 60(12): 927-938. doi: 10.1680/geot.8.P.074
    [3]
    张琼方, 夏唐代, 丁智, 等. 盾构近距离下穿对已建地铁隧道的位移影响及施工控制[J]. 岩土力学, 2016, 37(12): 3561-3568. doi: 10.16285/j.rsm.2016.12.027

    ZHANG Qiongfang, XIA Tangdai, DING Zhi, et al. Effect of nearby undercrossing tunneling on the deformation of existing metro tunnel and construction control[J]. Rock and Soil Mechanics, 2016, 37(12): 3561-3568. (in Chinese) doi: 10.16285/j.rsm.2016.12.027
    [4]
    LI P, DU S J, MA X F, et al. Centrifuge investigation into the effect of new shield tunnelling on an existing underlying large-diameter tunnel[J]. Tunnelling and Underground Space Technology, 2014, 42: 59-66. doi: 10.1016/j.tust.2014.02.004
    [5]
    SHI J W, WANG Y, NG C W W. Three-dimensional centrifuge modeling of ground and pipeline response to tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 04016054. doi: 10.1061/(ASCE)GT.1943-5606.0001529
    [6]
    魏纲, 王辰, 蔡诗淇, 等. 类矩形盾构施工对地下管线影响的模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1489-1495. doi: 10.11779/CJGE201908013

    WEI Gang, WANG Chen, CAI Shiqi, et al. Model tests on influences of quasi-rectangular shield construction on underground pipelines[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1489-1495. (in Chinese) doi: 10.11779/CJGE201908013
    [7]
    LIU H L, LI P, LIU J Y. Numerical investigation of underlying tunnel heave during a new tunnel construction[J]. Tunnelling and Underground Space Technology, 2011, 26(2): 276-283. doi: 10.1016/j.tust.2010.10.002
    [8]
    LIN X T, CHEN R P, WU H N, et al. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019, 89: 78-90. doi: 10.1016/j.tust.2019.03.021
    [9]
    张毫毫, 雷明锋, 刘凌晖, 等. 新建隧道下穿施工对既有上卧盾构隧道扰动影响规律研究[J]. 铁道科学与工程学报, 2020, 17(2): 396-404. doi: 10.19713/j.cnki.43-1423/u.T20190297

    ZHANG Haohao, LEI Mingfeng, LIU Linghui, et al. Study on the influence law of underpass construction of new tunnel on the disturbance of existing upper shield tunnel[J]. Journal of Railway Science and Engineering, 2020, 17(2): 396-404. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.T20190297
    [10]
    梁荣柱, 宗梦繁, 康成, 等. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版), 2018, 52(3): 420-430, 472. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201803002.htm

    LIANG Rongzhu, ZONG Mengfan, KANG Cheng, et al. Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(3): 420-430, 472. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201803002.htm
    [11]
    YU J, LI H, HUANG M S, et al. Timoshenko-beam-based response of existing tunnel to single tunneling underneath and numerical verification of opening and dislocation[J]. Computers and Geotechnics, 2022, 147: 104757. doi: 10.1016/j.compgeo.2022.104757
    [12]
    LI P, DU S J, SHEN S L, et al. Timoshenko beam solution for the response of existing tunnels because of tunneling underneath[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5): 766-784. doi: 10.1002/nag.2426
    [13]
    LIANG R Z, XIA T D, HONG Y, et al. Effects of above-crossing tunnelling on the existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2016, 58: 159-176. doi: 10.1016/j.tust.2016.05.002
    [14]
    管凌霄, 徐长节, 可文海, 等. 隧道下穿引起既有管道竖向位移的简化计算方法[J]. 土木与环境工程学报(中英文), 2021, 43(5): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202105008.htm

    GUAN Lingxiao, XU Changjie, KE Wenhai, et al. Simplified method for calculating the vertical displacement of existing pipelines caused by tunnel undercrossing[J]. Journal of Civil and Environmental Engineering, 2021, 43(5): 66-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202105008.htm
    [15]
    GAN X L, YU J L, GONG X N, et al. Behaviours of existing shield tunnels due to tunnelling underneath considering asymmetric ground settlements[J]. Underground Space, 2022, 7(5): 882-897. doi: 10.1016/j.undsp.2021.12.011
    [16]
    可文海, 管凌霄, 刘东海, 等. 盾构隧道下穿管道施工引起的管-土相互作用研究[J]. 岩土力学, 2020, 41(1): 221-228, 234. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001027.htm

    KE Wenhai, GUAN Lingxiao, LIU Donghai, et al. Research on upper pipeline-soil interaction induced by shield tunnelling[J]. Rock and Soil Mechanics, 2020, 41(1): 221-228, 234. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001027.htm
    [17]
    张志伟, 梁荣柱, 高坤, 等. 考虑管片环间接头弱化的新建隧道上穿引起既有盾构隧道纵向变形分析[J]. 岩石力学与工程学报, 2022, 41(增刊1): 2955-2970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1031.htm

    ZHANG Zhiwei, LIANG Rongzhu, GAO Kun, et al. Analysis of longitudinal displacement of existing shield tunnel due to construction of above-crossing new tunnel considering the weakening of circumferential joint[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2955-2970. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1031.htm
    [18]
    LIU X, FANG Q, JIANG A N, et al. Deformation analysis of existing tunnels with shearing and bending stiffness reduction at movement joints[J]. Tunnelling and Underground Space Technology, 2022, 123: 104408. doi: 10.1016/j.tust.2022.104408
    [19]
    魏纲, 俞国骅, 杨波. 新建隧道上穿既有隧道引起的剪切错台变形研究[J]. 自然灾害学报, 2018, 27(4): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201804007.htm

    WEI Gang, YU Guohua, YANG Bo. Study on shearing dislocation platform deformation of existing tunnel due to construction of above-crossing new tunnel[J]. Journal of Natural Disasters, 2018, 27(4): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201804007.htm
    [20]
    KERR A D. A study of a new foundation model[J]. Acta Mechanica, 1965, 1(2): 135-147. doi: 10.1007/BF01174308
    [21]
    宗翔. 基坑开挖卸载引起下卧已建隧道的纵向变形研究[J]. 岩土力学, 2016, 37(增刊2): 571-577, 596. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2072.htm

    ZONG Xiang. Study of longitudinal deformation of existing tunnel due to above excavation unloading[J]. Rock and Soil Mechanics, 2016, 37(S2): 571-577, 596. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2072.htm
    [22]
    冯国辉, 徐长节, 郑茗旺, 等. 考虑轴向内力时盾构下穿引起的既有隧道变形响应分析[J]. 东南大学学报(自然科学版), 2022, 52(3): 523-529. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202203013.htm

    FENG Guohui, XU Changjie, ZHENG Mingwang. Deformation response analysis on existing tunnel caused by shield tunneling underlying considering axial internal force[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(3): 523-529. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202203013.htm
    [23]
    ZHANG D M, HUANG Z K, LI Z L, et al. Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath[J]. Computers and Geotechnics, 2019, 108: 197-211.
    [24]
    LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
    [25]
    SHIBA Y, KAWASHIMA K, OBINATA N, et al. Evaluation procedure for seismic stress developed in shield tunnels based on seismic deformation method[J]. Doboku Gakkai Ronbunshu, 1989(404): 385-394.
    [26]
    WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317-323.
    [27]
    LIANG R Z, XIA T D, HUANG M S, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81: 167-187.
  • Related Articles

    [1]ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
    [2]TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
    [5]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001
    [6]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [7]WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010
    [8]WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    [9]WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533.
    [10]CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82.
  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (392) PDF downloads (140) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return