• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XUE Xiuli, LIAO Huan, ZENG Chaofeng, LIU Yunsi, ZENG Xing. Barrier effects of existing underground structures on deformation of strata induced by dewatering of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 103-111. DOI: 10.11779/CJGE20211393
Citation: XUE Xiuli, LIAO Huan, ZENG Chaofeng, LIU Yunsi, ZENG Xing. Barrier effects of existing underground structures on deformation of strata induced by dewatering of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 103-111. DOI: 10.11779/CJGE20211393

Barrier effects of existing underground structures on deformation of strata induced by dewatering of foundation pits

More Information
  • Received Date: November 22, 2021
  • Available Online: February 03, 2023
  • Published Date: November 22, 2021
  • When a foundation pit is adjacent to the existing underground structures, the groundwater seepage and ground movement caused by dewatering will be blocked by the underground structures (i.e., the water- and soil-blocking effects). On this occasion, the deformations of the foundation pit with or without adjacent underground structures should be different. A pumping test is carried out based on an actual project, and the variations of water levels and the deformations of retaining walls and soils induced by pumping are measured. Thus, a three-dimensional fluid-solid coupling model is established to simulate the dewatering of a foundation pit considering the effect of adjacent underground structures. The distance between the foundation pit and the existing underground structures (D) and the dewatering depth (Hd) are selected as the two varying parameters in the numerical model to investigate the barrier effects of the adjacent underground structures on the deformation of the foundation pit caused by pumping. It is found that when D is small (e.g., D < 20 m), the soil-blocking effects play a leading role, reducing the ground settlement outside the pit (compared with the condition without the underground structures outside the pit). When D is large (e.g., D > 20 m), the water-blocking effects play a leading role, increasing the ground settlement outside the pit. However, with the further increase of D (e.g., D > 40 m), both the water- and soil-blocking effects gradually decrease, and the distribution of the ground settlement outside the pit tends to be similar to that without the underground structures. In the design of foundation pits, the coupling actions of the water- and soil-blocking effects of the adjacent underground structures should be considered so that more accurate calculation of the ground losses and wall deflections will be achieved, which is helpful to optimize the design of the foundation pits.
  • [1]
    许四法, 周奇辉, 郑文豪, 等. 基坑施工对邻近运营隧道变形影响全过程实测分析[J]. 岩土工程学报, 2021, 43(5): 804-812. doi: 10.11779/CJGE202105003

    XU Sifa, ZHOU Qihui, ZHENG Wenhao, et al. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. (in Chinese) doi: 10.11779/CJGE202105003
    [2]
    木林隆, 朱孟玺, 黄茂松, 等. 基于临近桩基保护要求的基坑变形控制指标研究[J]. 岩土工程学报, 2021, 43(3): 465-470. doi: 10.11779/CJGE202103009

    MU Linlong, ZHU Mengxi, HUANG Maosong, et al. Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 465-470. (in Chinese) doi: 10.11779/CJGE202103009
    [3]
    程康, 徐日庆, 应宏伟, 等. 杭州软黏土地区某30.2 m深大基坑开挖性状实测分析[J]. 岩石力学与工程学报, 2021, 40(4): 851-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104018.htm

    CHENG Kang, XU Riqing, YING Hongwei, et al. Performance analysis of a 30.2 m deep-large excavation in Hangzhou soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 851-863. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104018.htm
    [4]
    刘祥勇, 宋享桦, 谭勇, 等. 南通富水砂性地层地铁深基坑抽水回灌现场试验研究[J]. 岩土工程学报, 2020, 42(7): 1331-1340. doi: 10.11779/CJGE202007017

    LIU Xiangyong, SONG Xianghua, TAN Yong, et al. Field tests on groundwater recharge of deep excavations in Nantong water-rich sandy stratum[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1331-1340. (in Chinese) doi: 10.11779/CJGE202007017
    [5]
    梁发云, 贾亚杰, 邓航, 等. 深基坑降水沉降计算土体弹性参数取值方法探讨[J]. 岩土工程学报, 2017, 39(增刊2): 29-32. doi: 10.11779/CJGE2017S2008

    LIANG Fayun, JIA Yajie, DENG Hang, et al. Discussions on elastic parameters of soil for land subsidence caused by decompression of confined aquifer in deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 29-32. (in Chinese) doi: 10.11779/CJGE2017S2008
    [6]
    曹依雯, 黄润秋, 沈水龙, 等. 基桩对含水层渗流阻挡作用效应研究[J]. 岩土力学, 2014, 35(6): 1617-1622. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406015.htm

    CAO Yiwen, HUANG Runqiu, SHEN Shuilong, et al. Investigation of blocking effect on groundwater seepage of piles in aquifer[J]. Rock and Soil Mechanics, 2014, 35(6): 1617-1622. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406015.htm
    [7]
    郑品, 许烨霜, 沈水龙. 地下结构对含水层挡水作用的室内试验研究[J]. 地下空间与工程学报, 2011, 7(2): 253-256, 268. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201102008.htm

    ZHENG Pin, XU Yeshuang, SHEN Shuilong. Laboratory investigation on cutoff effect of underground structure to groundwater seepage of aquifer[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(2): 253-256, 268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201102008.htm
    [8]
    许烨霜, 沈水龙, 马磊. 地下构筑物对地下水渗流的阻挡效应[J]. 浙江大学学报(工学版), 2010, 44(10): 1902-1906. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201010012.htm

    XU Yeshuang, SHEN Shuilong, MA Lei. Cutoff effect of groundwater seepage due to existence of underground structure[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10): 1902-1906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201010012.htm
    [9]
    李志高, 曾远, 刘国彬. 邻近地铁车站基坑开挖位移传递规律数值模拟[J]. 岩土力学, 2008, 29(11): 3104-3108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811045.htm

    LI Zhigao, ZENG Yuan, LIU Guobin. Numerical simulation of displacement transfer law of excavation adjacent metro station[J]. Rock and Soil Mechanics, 2008, 29(11): 3104-3108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811045.htm
    [10]
    朱炎兵, 周小华, 魏仕锋, 等. 临近既有地铁车站的基坑变形性状研究[J]. 岩土力学, 2013, 34(10): 2997-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310036.htm

    ZHU Yanbing, ZHOU Xiaohua, WEI Shifeng, et al. Investigation on deformation behaviors of foundation pit adjacent to existing metro stations[J]. Rock and Soil Mechanics, 2013, 34(10): 2997-3002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310036.htm
    [11]
    冯春蕾, 张顶立, 房倩, 等. 软土地区隔断墙控制基坑变形的作用机理及其效果研究[J]. 岩土工程学报, 2018, 40(11): 2087-2095. doi: 10.11779/CJGE201811015

    FENG Chunlei, ZHANG Dingli, FANG Qian, et al. Research on diaphragm wall mechanism and effect of deformation control in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2087-2095. (in Chinese) doi: 10.11779/CJGE201811015
    [12]
    BEAR J. Hydraulics of Groundwater[M]. New York: McGraw-Hill Book Co, 1979.
    [13]
    ZENG C F, XUE X L, LI M K. Use of cross wall to restrict enclosure movement during dewatering inside a metro pit before soil excavation[J]. Tunnelling and Underground Space Technology, 2021, 112: 103909.
    [14]
    ZENG C F, POWRIE W, XUE X L, et al. Effectiveness of a buttress wall in reducing retaining wall movement during dewatering before bulk excavation[J]. Acta Geotechnica, 2021, 16(10): 3253-3267.
    [15]
    郑刚, 曾超峰, 薛秀丽. 承压含水层局部降压引起土体沉降机理及参数分析[J]. 岩土工程学报, 2014, 36(5): 802-817. doi: 10.11779/CJGE201405002

    ZHENG Gang, ZENG Chaofeng, XUE Xiuli. Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 802-817. (in Chinese) doi: 10.11779/CJGE201405002
    [16]
    WANG X W, YANG T L, XU Y S, et al. Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering[J]. Journal of Hydrology, 2019, 577: 123969.
    [17]
    ZHANG W G, GOH A T C, GOH K H, et al. Performance of braced excavation in residual soil with groundwater drawdown[J]. Underground Space, 2018, 3(2): 150-165.
    [18]
    ZENG C F, ZHENG G, ZHOU X F, et al. Behaviours of wall and soil during pre-excavation dewatering under different foundation pit widths[J]. Computers and Geotechnics, 2019, 115: 103169.
    [19]
    曾超峰, 王硕, 袁志成, 等. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202102014.htm

    ZENG Chaofeng, WANG Shuo, YUAN Zhicheng, et al. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 338-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202102014.htm
  • Other Related Supplements

  • Cited by

    Periodical cited type(5)

    1. 单毅,平阳泽,袁杰,崔杰,童华炜,李亚东. 基于颗粒尺寸与级配的微生物固化钙质砂最大动剪切模量试验研究. 岩石力学与工程学报. 2024(10): 2455-2465 .
    2. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    3. 熊海斌,余虔,张升,童晨曦,兰鹏,刘光庆. 考虑颗粒破碎的砂土UH模型及其参数反演. 岩土工程学报. 2023(01): 134-143 . 本站查看
    4. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    5. 王永志,王体强,袁晓铭,张雪东,陈卓识. 动力离心试验反演分析砂土模量阻尼比特征与可靠性. 岩石力学与工程学报. 2022(08): 1717-1727 .

    Other cited types(7)

Catalog

    Article views (277) PDF downloads (106) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return