• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Rui-ling, WANG Sui-zhu, WU Li-jian, LU Huan-cai, SHEN Yu-peng. Bulging deformation mechanism of asphalt pavement in sulfate saline soil areas of Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1739-1745. DOI: 10.11779/CJGE202109020
Citation: FENG Rui-ling, WANG Sui-zhu, WU Li-jian, LU Huan-cai, SHEN Yu-peng. Bulging deformation mechanism of asphalt pavement in sulfate saline soil areas of Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1739-1745. DOI: 10.11779/CJGE202109020

Bulging deformation mechanism of asphalt pavement in sulfate saline soil areas of Xinjiang

More Information
  • Received Date: December 29, 2020
  • Available Online: December 02, 2022
  • Based on two highways in Aksu prefecture of Xinjiang, four typical diseased sections are selected to excavate test pits on the basis of investigating bulging diseases of highways, the damage of structure layer pavement is observed, the salt content, mineral composition and pH value of base and subgrade fill are sampled and tested, and the mechanism of pavement diseases of the two highways is analyzed. The results show that the ions in the base course of Highway A (Provincial Highway) are mainly SO42 and Ca2+, so a chemical reaction takes place and Ettringite is formed. The content of Ca2+ in the base course of Highway B (National Highway) is high, and it also contains a certain amount of SO42 and CO32, so a chemical reaction takes place and Wollastonite gypsum is formed. In addition, the high temperature in summer and the alkali content in cement exceed the standard, accelerate the occurrence of two kinds of sulfate erosion. Finally, according to the mechanism of the two highway diseases, the preventive measures for bulging diseases of highways in the sulfate saline soil areas are put forward.
  • [1]
    王军伟. 水泥稳定碎石基层沥青路面拱起开裂研究[D]. 西安: 长安大学, 2017.

    WANG Jun-wei. Research on Expansion Cracking of Asphalt Pavement by Cement Stabilized Macadam Base[D]. Xi'an: Chang'an University, 2017. (in Chinese)
    [2]
    张海龙. 沙漠区沥青混凝土路面横向隆起成因及力学分析[D]. 呼和浩特: 内蒙古大学, 2018.

    ZHANG Hai-long. The Cause and Mechanical Analysis on the Transverse Uplift of Asphalt Concrete Pavement in Desert Area[D]. Hohhot: Inner Mongolia University, 2018. (in Chinese)
    [3]
    ROLLINGS R S, BURKES J P, ROLLINGS M P. Sulfate attack on cement-stabilized sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 125(5): 364-372.
    [4]
    CHEN D H, HARRIS P, SCULLION T, et al. Forensic investigation of a sulfate-heaved project in Texas[J]. Journal of Performance of Constructed Facilities, 2005, 19(4): 324-330. doi: 10.1061/(ASCE)0887-3828(2005)19:4(324)
    [5]
    DURAN D R. Case study: heave potential associated with ettringite formation in lime treated materials for an Aurora, Colorado, roadway[C]//Biennial Geotechnical Seminar, 2010, Denver.
    [6]
    AMANDA G A, ONDRA M D, WASSIM T, et al. Sulfate induced heave in Oklahoma soils due to lime stabilization[C]//Characterization, Monitoring, and, Modeling of Geosystems, 2008, Geocongress New Orleans.
    [7]
    MCCARTHY M J, CSETENYI L J, SACHDEVA A, et al. Fly ash influences on sulfate heave in lime-stabilised soils[J]. Proceedings of the Institution of Civil Engineers, 2012, 165(3): 147-158.
    [8]
    许刚. 硫酸盐环境下水稳基层的病害分析及防治措施[J]. 山西建筑, 2017, 43(1): 162-164. doi: 10.3969/j.issn.1009-6825.2017.01.085

    XU Gang. On disease analysis of moisture base under sulfate environment and its prevention measures[J]. Shanxi Architecture, 2017, 43(1): 162-164. (in Chinese) doi: 10.3969/j.issn.1009-6825.2017.01.085
    [9]
    蒲翠玲. 盐渍化半刚性基层材料强度与变形规律研究[D]. 西安: 长安大学, 2008.

    PU Cui-ling. Study on the Intensity and Law Out of Shape of the Semi-Rigid Matearial Intensity at the Basic Level of Salty Soil[D]. Xi'an: Chang'an University, 2008. (in Chinese)
    [10]
    高江平, 蒲翠玲, 赵永祥, 等. 含硫酸盐的半刚性基层材料干缩性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2010, 42(3): 323-328. doi: 10.3969/j.issn.1006-7930.2010.03.004

    GAO Jiang-ping, PU Cui-ling, ZHAO Yong-xiang, et al. Experimental study on the dry shrinking performance of the semi-rigid material intensity at the basic level of sulfate salty soil[J]. Journal of Xi'an University of Architecture & Technology (Nature Science Edition), 2010, 42(3): 323-328. (in Chinese) doi: 10.3969/j.issn.1006-7930.2010.03.004
    [11]
    沙爱民, 许永明, 刘文锁, 等. 掺有硫酸钠石灰类稳定土的强度与体积变化[J]. 岩土工程学报, 1998, 20(1): 34-38. doi: 10.3321/j.issn:1000-4548.1998.01.009

    SHA Ai-min, XU Yong-ming, LIU Wen-suo, et al. Strength and volume change of lime-stabilized soils with sodium sulphate[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 34-38. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.01.009
    [12]
    高艳龙, 黄莘, 刘峰. 高含硫粉煤灰对二灰基层膨胀开裂的影响与分析[J]. 重庆交通学院学报, 2005, 24(5): 53-55. doi: 10.3969/j.issn.1674-0696.2005.05.013

    GAO Yan-long, HUANG Xin, LIU Feng. The influence and analyse of fly ash with high sulphur content on expansion cracks of lime-fly ash base[J]. Journal of Chongqing Jiaotong University, 2005, 24(5): 53-55. (in Chinese) doi: 10.3969/j.issn.1674-0696.2005.05.013
    [13]
    胡江洋, 毛君, 张浩, 等. 环保脱硫型粉煤灰对水泥粉煤灰稳定基层膨胀开裂的破坏机理研究[J]. 铁道科学与工程学报, 2016, 13(1): 69-73. doi: 10.3969/j.issn.1672-7029.2016.01.011

    HU Jiang-yang, MAO Jun, ZHANG Hao, et al. Environmental protection desulfurization fly ash on the destruction mechanism of expansion crack on the base of the cement fly-ash stabilized[J]. Journal of Railway Science and Engineering, 2016, 13(1): 69-73. (in Chinese) doi: 10.3969/j.issn.1672-7029.2016.01.011
    [14]
    宋亮, 王选仓. 新疆盐渍土地区水泥稳定基层盐胀变形规律及机理[J]. 公路交通科技, 2019, 36(7): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201907003.htm

    SONG Liang, WANG Xuan-chang. Salt heaving deformation rule and mechanism of cement stabilized base of saline areas in Xinjiang[J]. Journal of Highway and Transportation Research and Development, 2019, 36(7): 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201907003.htm
    [15]
    尧俊凯, 叶阳升, 王鹏程, 等. 硫酸盐侵蚀水泥改良路基段上拱研究[J]. 岩土工程学报, 2019, 41(4): 782-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904029.htm

    YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, et al. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904029.htm
    [16]
    应赛, 周凤玺, 文桃, 等. 盐渍土冻结过程中的特征温度研究[J]. 岩土工程学报, 2021, 41(1): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101009.htm

    YING Sai, ZHOU Feng-xi, WEN Tao, et al. Characteristic temperatures of saline soil during freezing[J]. Chinese Journal of Geotechnical Engineering, 2021, 41(1): 53-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101009.htm
    [17]
    田林杰. 盐渍土地区水泥基材抗硫酸盐侵蚀宏观性能及微观结构研究[D]. 兰州: 兰州交通大学, 2017.

    TIAN Lin-jie. Study on Macroscopic Properties and Microstructure of Cement-Based Materials of Sulfate Corrosion Resistance in Saline Soil Area[D]. Lanzhou: Lanzhou Jiaotong University, 2017. (in Chinese)
    [18]
    孙彬, 王景贤, 周燕, 等. 冻融循环、硫酸盐侵蚀和碱骨料反应的混凝土损伤鉴别方法[J]. 建筑科学, 2011, 27(增刊1): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2011S1009.htm

    SUN Bin, WANG Jing-xian, ZHOU Yan, et al. Identification method for damages due to freeze-thaw sulfate attack and alkali-aggregate reaction[J]. Building Science, 2011, 27(S1): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX2011S1009.htm
    [19]
    殷强. 混凝土碱—骨料反应检测方法和碱活性的预防措施[D]. 成都: 西南交通大学, 2006.

    YIN Qiang. The Testing Method and Suppressing Measure of Alkali Aggregate Reaction[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [20]
    Kumar MEHTA P. Sulfate attack on concrete separating myths from reality[J]. Concrete International, 2000, 22(8): 57-59.
    [21]
    公路路面基层施工技术细则:JTG F20—2015[S]. 2015.

    Technical Guidelines for Construction of Highway Roadbases: JTG F20—2015[S]. 2015. (in Chinese)
  • Related Articles

    [1]ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
    [2]TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
    [5]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001
    [6]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [7]WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010
    [8]WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    [9]WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533.
    [10]CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82.
  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (249) PDF downloads (126) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return