• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIANG Guo-sheng, LÜ Li-yong, GE Lei, Zhou Yin-kang, XIE Sheng-hua. Effects of temperature on swelling characteristics of GMZ bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 77-84. DOI: 10.11779/CJGE202101009
Citation: XIANG Guo-sheng, LÜ Li-yong, GE Lei, Zhou Yin-kang, XIE Sheng-hua. Effects of temperature on swelling characteristics of GMZ bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 77-84. DOI: 10.11779/CJGE202101009

Effects of temperature on swelling characteristics of GMZ bentonite

More Information
  • Received Date: November 16, 2019
  • Available Online: December 04, 2022
  • The buffer/backfill performance of bentonite-based materials may be affected by the influences of temperature fields, thereby leading to uncertainties in the safe operation of repositories. In order to address this issue, the swelling tests on Gaomiaozi (GMZ) bentonite are carried out in distilled water at 25, 40, 60, and 90 °C. The results show that the swelling of GMZ bentonite increases with the temperature, owing to that the osmotic swelling dominates the swelling of compacted GMZ bentonite under the experimental conditions. The maximum swelling strain increases linearly with the temperature, whereas the swelling pressure increases exponentially with the temperature. The swelling characteristics of compacted GMZ bentonite can be expressed as em=KpD-3. According to the results of N2 adsorption tests, the fractal dimension, D, of GMZ bentonite is unaffected by the temperature. Calculated by the diffuse double layer model under osmotic swelling, a linear relation is found between the montmorillonite swelling coefficient K and the temperature Tc, which is verified by the swelling tests on GMZ bentonite and Bikaner bentonite. Combining the linear KTc relation and the fractal em-p relation, a simple method for evaluating the swelling of GMZ bentonite affected by the temperature is proposed.
  • [1]
    KOMINE H, OGATA N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490. doi: 10.1139/t94-057
    [2]
    刘樟荣, 崔玉军, 叶为民, 等. 缓冲/回填材料——膨润土颗粒及其混合物研究进展[J]. 岩土工程学报, 2020, 42(8): 1401-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008007.htm

    LIU Zhang-rong, CUI Yu-jun, YE Wei-min, et al. Advances in researches on buffer/backfilling materials— bentonite pellets and pellet mixtures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1401-1410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008007.htm
    [3]
    徐永福. 考虑渗透吸力影响膨润土的修正有效应力及其验证[J]. 岩土工程学报, 2019, 41(4): 631-638. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm

    XU Yong-fu. Modified effective stress induced by osmotic suction and its validation in volume change and shear strength of bentonite in saline solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 631-638. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm
    [4]
    CHO W J, LEE J O, KANG C H. Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository[J]. Annals of Nuclear Energy, 2000, 27(14): 1271-1284. doi: 10.1016/S0306-4549(99)00124-3
    [5]
    李晓月, 徐永福. 盐溶液中膨润土峰值剪切强度的计算方法[J]. 岩土工程学报, 2019, 41(5): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905014.htm

    LI Xiao-yue, XU Yong-fu. Calculation of peak shear strength of bentonite in salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 885-891. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905014.htm
    [6]
    张虎元, 崔素丽, 刘吉胜, 等. 混合型缓冲回填材料膨胀力试验研究[J]. 岩土工程学报, 2010, 31(10): 3087-3095. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201010011.htm

    ZHANG Hu-yuan, CUI Su-li, LIU Jie-sheng, et al. Experimental study of swelling pressure of compacted bentonite-sand mixture[J]. Chinese Journal of Geotechnical Engineering, 2010, 31(10): 3087-3095. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201010011.htm
    [7]
    SUN W J, ZONG FEI Y, SUN D A, et al. Swelling prediction of bentonite-sand mixtures in the full range of sand content[J]. Engineering Geology, 2017, 222: 146-155. doi: 10.1016/j.enggeo.2017.04.004
    [8]
    LLORET MORANCHO A, VILLAR M V, SANCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53: 27-40. doi: 10.1680/geot.2003.53.1.27
    [9]
    HERBERT H J, KASBOHM J, SPRENGER H, et al. Swelling pressures of MX-80 bentonite in solutions of different ionic strength[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: 327-342. doi: 10.1016/j.pce.2008.10.005
    [10]
    项国圣, 姜昊, 徐永福. 压实膨润土膨胀变形的分形计算方法[J]. 岩土力学, 2015, 36(4): 1009-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504015.htm

    XIANG Guo-sheng, JIANG Hao, XU Yong-fu. Fractal calculation method for swelling deformation of compacted bentonite[J]. Rock and Soil Mechanics, 2015, 36(4): 1009-1014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504015.htm
    [11]
    PUSCH R. Swelling Pressure of Highly Compacted Bentonite[R]. Stockholm: Swedish Nuclear Fuel Supply Co, 1980.
    [12]
    BAG R, RABBANI A. Effect of temperature on swelling pressure and compressibility characteristics of soil[J]. Applied Clay Science, 2017, 136: 1-7. doi: 10.1016/j.clay.2016.10.043
    [13]
    CHEN Y G, DONG X X, ZHANG X D, et al. Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite[J]. Applied Clay Science, 2018, 166: 318-326. doi: 10.1016/j.clay.2018.10.001
    [14]
    PUSCH R, KARNLAND O, HOKMARK H. GMM-Ea General Microstructural Model for Qualitative and Quantitative Studies of Smectite Clays[R]. Stockholm: Swedish Nuclear Fuel Supply Co, 1990.
    [15]
    LIU L. Prediction of swelling pressures of different types of bentonite in dilute solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434: 303-318. doi: 10.1016/j.colsurfa.2013.05.068
    [16]
    陈永贵, 蒯琪, 叶为民, 等. 高压实膨润土膨胀力预测研究[J]. 同济大学学报, 2018, 46(12): 1628-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm

    CHEN Yong-gui, KUAI Qi, YE Wei-min, et al. Prediction of Swelling Pressure for Compacted Bentonite[J]. Journal of Tongji University, 2018, 46(12): 1628-1636. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm
    [17]
    YE W M, WAN M, CHEN B, et al. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite[J]. Environmental Earth Sciences, 2013, 68(1): 281-288.
    [18]
    CUI S, DU Y, WANG X, et al. Influence of temperature on swelling deformation characteristic of compacted GMZ bentonite-sand mixtures[J]. Journal of Central South University, 2018, 25(11): 2819-2830.
    [19]
    ROMERO E, VILLAR M V, LLORET A. Thermo- hydro-mechanical behaviour of two heavily overconsolidated clays[J]. Engineering Geology, 2005, 81(3): 255-268.
    [20]
    TRIPATHY S, BAG R, THOMAS H R. Enhanced Isothermal Effect on Swelling Pressure of Compacted MX80 Bentonite[M]. Cham: Springer, 2015: 537-539.
    [21]
    VILLAR M V, LLORET A. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science, 2004, 26(1/2/3/4): 337-350.
    [22]
    XIANG G S, XU Y F, YU F, et al. Prediction of swelling characteristics of compacted GMZ bentonite in salt solution incorporating ion-exchange reactions[J]. Clays and Clay Minerals, 2019, 67(2): 163-172.
    [23]
    TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437-450.
    [24]
    XU Y F, MATSUOKA H, SUN D A. Swelling characteristics of fractal-textured bentonite and its mixtures[J]. Applied Clay Science, 2003, 22(4): 197-209.
    [25]
    XU Y F, XIANG G S, JINAG H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354-361.
    [26]
    PASTINA B, HELLÄ P. Expected Evolution of a Spent Nuclear Fuel Repository at Olkiluoto[R]. Posiva Oy, 2006.
    [27]
    CUI S L, ZHANG H Y, ZHANG M. Swelling characteristics of compacted GMZ bentonite-sand mixtures as a buffer/backfill material in China[J]. Engineering Geology, 2012, 141: 65-73.
    [28]
    ZHANG F, YE W M, CHEN Y G, et al. Influences of salt solution concentration and vertical stress during saturation on the volume change behavior of compacted GMZ01 bentonite[J]. Engineering Geology, 2016, 207: 48-55.
    [29]
    SUN D A, CUI H B, SUN W J. Swelling of compacted sand-bentonite mixtures[J]. Applied Clay Science, 2009, 43: 485-492.
    [30]
    YIN Y. Adsorption isotherm on fractally porous materials[J]. Langmuir, 1991, 7(2): 216-218.
    [31]
    KAHR G, KRAEHENBUEHL F, STOECKLI H F, et al. Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques: II. Heats of immersion, swelling pressures and thermodynamic properties[J]. Clay Minerals, 1990, 25(4): 499-506.
    [32]
    XIANG G S, YE W M, XU Y F, et al. Swelling deformation of Na-bentonite in solutions containing different cations[J]. Engineering Geology, 2020, 105757.
    [33]
    XIANG G S, YE W M, YU F, et al. Surface fractal dimension of bentonite affected by long-term corrosion in alkaline solution[J]. Applied Clay Science, 2019, 175: 94-101.
    [34]
    KOMINE H, OGATA N. New equations for swelling characteristics of bentonite-based buffer materials[J]. Canadian Geotechnical Journal, 2003, 40(2): 460-475.
    [35]
    SUN D A, ZHANG, J Y, ZHANG J R, et al. Swelling characteristics of GMZ bentonite and its mixtures with sand[J]. Applied Clay Science, 2013, 83: 224-230.
  • Cited by

    Periodical cited type(5)

    1. 单毅,平阳泽,袁杰,崔杰,童华炜,李亚东. 基于颗粒尺寸与级配的微生物固化钙质砂最大动剪切模量试验研究. 岩石力学与工程学报. 2024(10): 2455-2465 .
    2. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    3. 熊海斌,余虔,张升,童晨曦,兰鹏,刘光庆. 考虑颗粒破碎的砂土UH模型及其参数反演. 岩土工程学报. 2023(01): 134-143 . 本站查看
    4. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    5. 王永志,王体强,袁晓铭,张雪东,陈卓识. 动力离心试验反演分析砂土模量阻尼比特征与可靠性. 岩石力学与工程学报. 2022(08): 1717-1727 .

    Other cited types(7)

Catalog

    Article views (305) PDF downloads (148) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return