• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

热力盾构隧道先盾后井施工衬砌接头变形机理与控制

姚文博, 贺少辉, 张嘉文, 刘夏冰, 郭炎伟, 马腾

姚文博, 贺少辉, 张嘉文, 刘夏冰, 郭炎伟, 马腾. 热力盾构隧道先盾后井施工衬砌接头变形机理与控制[J]. 岩土工程学报, 2018, 40(6): 1056-1065. DOI: 10.11779/CJGE201806011
引用本文: 姚文博, 贺少辉, 张嘉文, 刘夏冰, 郭炎伟, 马腾. 热力盾构隧道先盾后井施工衬砌接头变形机理与控制[J]. 岩土工程学报, 2018, 40(6): 1056-1065. DOI: 10.11779/CJGE201806011
YAO Wen-bo, HE Shao-hui, ZHANG Jia-wen, LIU Xia-bing, GUO Yan-wei, MA Teng. Deformation mechanism and control technology of segment joints during process of shield tunneling prior to shaft excavation in a heat-supplying tunnel project[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1056-1065. DOI: 10.11779/CJGE201806011
Citation: YAO Wen-bo, HE Shao-hui, ZHANG Jia-wen, LIU Xia-bing, GUO Yan-wei, MA Teng. Deformation mechanism and control technology of segment joints during process of shield tunneling prior to shaft excavation in a heat-supplying tunnel project[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1056-1065. DOI: 10.11779/CJGE201806011

热力盾构隧道先盾后井施工衬砌接头变形机理与控制  English Version

基金项目: 北京热力集团基金课题(C14L01540)
详细信息
    作者简介:

    姚文博(1991– ),男,博士研究生,主要从事隧道及地下工程方面的研究。E-mail:yao_wb@bjtu.edu.cn。

    通讯作者:

    贺少辉,E-mail:heshaohui1114@163.com

Deformation mechanism and control technology of segment joints during process of shield tunneling prior to shaft excavation in a heat-supplying tunnel project

  • 摘要: 先盾后井是热力盾构隧道建设中一种高效经济的施工工法。结合中国首例大断面热力盾构隧道工程,基于纵向等效连续化模型和弹性地基梁理论,对施工过程中衬砌接头受力特征和变形机理进行了分析,并提出控制措施;然后建立了衬砌接头全断面接触面单元数值模型,对控制效果进行分析和评价;最后通过现场监测,得到了不同施工阶段管片纵向轴力及接缝变形规律。研究结果表明:先盾后井工法施工中,衬砌接头变形分为两个阶段:基坑开挖及管片拆除,其中管片拆除为接头变形的主因,基坑施工中,基底卸荷产生的负弯矩作用于隧道上,导致邻近竖井管片底部轴力减小、环缝张开,拆除基坑内管片时,作用于端头管片的残余盾构推力和螺栓预紧力消失,导致管片纵向轴力进一步衰减,环缝二次张开;根据现场监测结果,提出的对邻近竖井的管片纵向拉紧并复紧连接螺栓,进行混凝土铺底及衬砌背后二次注浆的控制措施能够有效控制轴力损失,减小接头变形,施工中环向接缝最大张开量3.51 mm,满足隧道防水要求;采用全断面接触面单元建立的数值模型可以较为精确地模拟施工中管片接头力学行为,其结果可作为控制效果评价参考依据。
    Abstract: The shaft excavation following the shield tunnel is an efficient and economic method in the construction of heating shield tunnel. Based on the first large cross-section heating shield tunnel project, the stress characteristics and deformation mechanism of segment joints at different construction stages are analyzed using the longitudinal equivalent continuous model and the elastic foundation beam theory, and the control measures are proposed. The numerical model for the full face interface element is established, and the control effect of the measures is analyzed and appraised. Finally, the change laws of longitudinal stresses and segment joints at different construction stages are measured through field monitoring. The results indicate that the deformation of segment joints can be divided into two stages in the shaft excavation following the shield tunnel: foundation excavation and segment removal, and the segment removal is the main reason. The negative bending moment formed in the excavation of shaft affects the bottom segments of tunnel, and the disappearing of remnant shield force caused by segment removal enlarges the loss of longitudinal stress and opening of segment joints. According to the monitoring results, the control measures including longitudinal tension segment and retightening the bolt, pouring concrete in the tunnel bottom and secondary grouting behind the lining can effectively control the loss of longitudinal stress, and reduce the deformation of joints. The maximum opening of segment joints is 3.51 mm, meeting the waterproof requirements of tunnels. The numerical model based on the full face interface element can be used to simulate the mechanical behaviors of the segment joint in construction, and the results can be used as reference for evaluation of the control effects.
  • [1] 周文波. 盾构法隧道施工技术及应用[M]. 北京: 中国建筑工业出版社, 2004: 21-22.
    (ZHOU Wen-bo.Shield tunneling technology[M]. Beijing: China Architecture & Building Press, 2004: 21-22. (in Chinese))
    [2] 张新金, 刘维宁, 路美丽, 等. 北京地铁盾构法施工问题及解决方案[J]. 土木工程学报, 2008 , 41(10): 93-99.
    (ZHANG Xin-jin, LIU Wei-ning, LU Mei-li, et al.Problem and solutions of shield tunnel for Beijing metro[J]. China Civil Engineering Journal, 2008, 41(10): 93-99. (in Chinese))
    [3] 乐贵平, 贺少辉, 罗富荣. 北京地铁盾构隧道技术[M]. 北京: 人民交通出版社, 2012.
    (LE Gui-ping, HE Shao-hui, LUO Fu-rong.Beijing subway shield tunneling technology[M]. Beijing: China Communications Press, 2012. (in Chinese))
    [4] THOMAS Kasper, CAROLA Edvardsen, GERT Wittneben, et al.Lining design for the district heating tunnel in copenhagen with steel fiber reinforced concrete segments[J]. Tunneling and Underground Space Technology, 2008, 23(5): 574-587.
    [5] 张新金. 盾构法与浅埋暗挖法结合建造地铁车站关键技术研究[D]. 北京: 北京交通大学, 2010.
    (ZHANG Xin-jin.Study on key technologies of the metro station constructed by shield tunneling method combined with mining method[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese))
    [6] 王芳, 汪挺, 贺少辉, 等. PBA法扩挖大直径盾构隧道修建地铁车站时结构关键节点的受力分析[J]. 中国铁道科学, 2013, 34(05): 54-62.
    (WANG Fang, WANG Ting, HE Shao-hui, et al.Mechanical behavior of critical joints in enlarging large diameter shield tunnel by PBA method to build metro station[J]. China Railway Science, 2013, 34(05): 54-62. (in Chinese))
    [7] 李兆平, 汪挺, 郑昊. 基于大直径盾构隧道扩挖地铁车站关键工况控制措施研究[J]. 岩石力学与工程学报, 2015, 34(9): 1869-1876.
    (LI Zhao-ping, WANG Ting, ZHENG Hao.Controlling measurements for metro station construction on enlarging large diameter shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1869-1876. (in Chinese))
    [8] 周泽林, 陈寿根, 陈亮, 等. 基坑施工对下卧地铁隧道上抬变形影响的简化理论分析[J]. 岩土工程学报, 2015, 37(12): 2224-2235.
    (ZHOU Ze-lin, CHEN Shou-gen, CHEN Liang, et al.Analysis of uplift deflection of subway tunnel due to adjacent pit excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2224-2235. (in Chinese))
    [9] 刘印, 张冬梅, 黄宏伟. 盾构隧道局部长期渗水对隧道变形及地表沉降的影响分析[J]. 岩土力学, 2013, 34(1): 290-298, 304.
    (LIU Yin, ZHANG Dong-mei, HUANG Hong-wei.Influence of long-term partial drainage of shield tunnel on tunnel deformation and surface settlement[J]. Rock and Soil Mechanics, 2013, 34(1): 290-298, 304. (in Chinese))
    [10] 杨春山, 莫海鸿, 陈俊生, 等. 盾构隧道先隧后井施工法对管片张开量的影响研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2870-2877.
    (YANG Chun-shan, MO Hai-hong, CHEN Jun-sheng, et al.Study the influence on segment opening of shield tunneling by tunnels followed by well excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2870-2877. (in Chinese))
    [11] 杨春山. 盾构隧道先隧后井施工对隧道变形的影响及对策研究[D]. 广东: 华南理工大学, 2015.
    (YANG Chun-shan.Influence of shield tunnel construction on tunnel deformation and countermeasures[D]. Guangdong: South China University of Technology, 2015. (in Chinese))
    [12] 黎国雄, 杨春山. 盾构隧道先隧后井施工技术特点分析[J]. 四川理工学院学报(自然科学版), 2014, 27(3): 75-80.
    (LI Guo-xiong, YANG Chun-shan.Characteristics analysis of tunnel first well after construction method for shield tunnel[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2014, 27(3): 75-80. (in Chinese))
    [13] 莫海鸿, 杨春山, 陈俊生, 等. 盾构隧道先隧后井施工中工作井支护结构优化[J]. 中南大学学报(自然科学版), 2016, 47(4): 1346-1352.
    (MO Hai-hong, YANG Chun-shan, CHEN Jun-sheng, et al.Supporting optimization of working well in shield construction with tunnel followed by well excavation[J]. Journal of Central South University (Science and Technology), 2016, 47(4): 1346-1352. (in Chinese))
    [14] 志波由纪夫, 川島一彦, 大日方尚己. 応答変位法によるシ―ルドトソネルの地震时断面力の算定法[C]// 土木学会論文集. 东京, 1989: 385-394.
    (YUKIS Shiba, KAZUHIKO Kawashima, NAOMI Obinata.Calculation of internal force of structure during earthquake using response displacement method[C]// Proceedings of the Civil Academy. Tokyo, 1989: 385-394. (in Japanese))
    [15] 志波由纪夫,川島一彦. シ―ルドトソネルの耐震解析に用いる長手方向覆土剛性の評價法[C]// 土木学会論文集. 东京, 1988: 319-327.
    (YUKIS Shiba, KAZUHIKO Kawashima.The evaluation of the duct’s longitudinal rigidity in the seismic analysis of shield tunnel[C]// Proceedings of the Civil Academy. Tokyo, 1988: 319-327. (in Japanese))
    [16] 郑永来, 韩文星, 童琪华, 等. 软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J]. 岩石力学与工程学报, 2005, 24(24): 4552-4558.
    (ZHENG Yong-lai, HAN Wen-xing, TONG Qi-hua, et al.Study on longitudinal crack of shield tunnel segment joint due to asymmetric settlement in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4552-4558. (in Chinese))
    [17] 黄栩, 黄宏伟, 张冬梅. 开挖卸荷引起下卧已建盾构隧道的纵向变形研究[J]. 岩土工程学报, 2012, 34(7): 1241-1249.
    (HUANG Xu, HUANG Hong-wei, ZHANG Dong-mei.Longitudinal deflection of existing shield tunnels due to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1241-1249. (in Chinese))
    [18] 李翔宇, 刘国彬, 杨潇, 等. 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36(4): 662-670.
    (LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al.Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 662-670. (in Chinese))
    [19] 钟小春, 张金荣, 秦建设, 等. 盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J]. 岩土力学, 2011, 32(1): 132-136.
    (ZHONG Xiao-chun, ZHANG Jin-rong, QIN Jian-she, et al.Simplified calculation model for longitudinal equivalent bending stiffness of shield tunnel and its influence factors’ analysis[J]. Rock and Soil Mechanics, 2011, 32(1): 132-136. (in Chinese))
    [20] Itasca Consulting Group Inc. FLAC3D users manuals[M]. Version 2.1 Minneapolis: Minnesota, 2002.
  • 期刊类型引用(29)

    1. 彭普,李泽,张小艳,申林方,许芸. 土质边坡的单元失效概率与失效模式研究. 工程力学. 2024(01): 193-207 . 百度学术
    2. 张亚平,李克钢,李明亮,秦庆词,王航龙. AHP-Critic法正态云模型在边坡稳定性评价中的应用. 有色金属工程. 2024(03): 146-155 . 百度学术
    3. 甘永波,李亚军,李瑞杰,秦浩东,张杰,张彬. 考虑土体强度参数随机场的横向加载管-土相互作用分析. 水利水运工程学报. 2024(02): 143-153 . 百度学术
    4. 楼晓明,孙逸玮,张蓟. 软土地基沟渠开挖诱发远处围堰失稳的实例分析. 水利水电技术(中英文). 2024(S1): 151-159 . 百度学术
    5. 明思成,仉文岗,何昱苇,陈龙龙,覃长兵. 考虑各向异性空间变异性的边坡可靠度分析. 土木与环境工程学报(中英文). 2024(04): 60-74 . 百度学术
    6. 周家文,陈明亮,瞿靖昆,胡宇翔,夏茂圃,蒋楠,李海波,范刚. 水库滑坡灾害致灾机理及防控技术研究与展望. 工程科学与技术. 2023(01): 110-128 . 百度学术
    7. 朱磊,高欣悦,万愉快,丁一民. 地震力对边坡可靠度的影响. 科学技术与工程. 2023(10): 4324-4330 . 百度学术
    8. 彭乐平,张桂银,孙鹏. 竹仔岭花岗岩矿边坡稳定性研究. 采矿技术. 2023(03): 52-56 . 百度学术
    9. 刘昆珏,随意,程晓辉,陈朝晖,普利坚. 考虑围岩参数空间变异性的连拱隧道稳定性分析. 地下空间与工程学报. 2023(03): 911-920 . 百度学术
    10. 曾勇,李亚军,严俊,田振华. 考虑土体强度参数深度依赖性的非平稳随机场边坡滑动深度和体积分析. 水资源与水工程学报. 2023(03): 174-183+192 . 百度学术
    11. 黄延,陈雪亮. 基于不同排布型式的弧形抗滑桩边坡加固效果研究. 能源与环保. 2022(04): 24-29+44 . 百度学术
    12. 许晓亮,张家富,曾林风,徐健文,史为政. 考虑网格自适应的边坡可靠性随机有限元极限分析研究. 三峡大学学报(自然科学版). 2022(06): 48-57 . 百度学术
    13. 王小龙. 多级路堑边坡地震稳定性可靠度分析. 甘肃科技. 2022(19): 9-13+17 . 百度学术
    14. 郑晓珣. 基于流固耦合的强度折减法的地下水渗流对隧道稳定性的影响研究. 能源与环保. 2022(11): 284-289 . 百度学术
    15. 缑变彩,王帆. 基于稀疏混沌多项式的边坡可靠度分析方法. 土木工程与管理学报. 2021(02): 198-204+210 . 百度学术
    16. 严柏杨,张京伍,朱德胜,葛彬,舒爽. 考虑土体不排水强度非平稳性对条形基础承载力影响的可靠度分析. 河北工程大学学报(自然科学版). 2021(01): 20-25 . 百度学术
    17. 王鹏. 不同因素对填筑路堤边坡稳定性影响分析. 黑龙江交通科技. 2021(04): 73-75 . 百度学术
    18. 刘辉,郑俊杰,章荣军. 考虑不排水抗剪强度空间变异性的黏土边坡系统失效概率分析. 岩土力学. 2021(06): 1529-1539 . 百度学术
    19. 孙志豪,谭晓慧,孙志彬,林鑫,姚玉川. 基于上限分析的空间变异土质边坡可靠度. 岩土力学. 2021(12): 3397-3406 . 百度学术
    20. 孙锐,杨峰,阳军生,赵乙丁,郑响凑,罗静静,姚捷. 基于二阶锥规划与高阶单元的自适应上限有限元研究. 岩土力学. 2020(02): 687-694 . 百度学术
    21. 易红卫,樊陵姣,谌涛. 基于有限元分析的矿山边坡自动数值建模与分析研究. 矿冶工程. 2020(03): 30-33 . 百度学术
    22. 陈朝晖,黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型. 岩土工程学报. 2020(07): 1247-1256 . 本站查看
    23. 刘爱娟,崔玉龙,刘铁新. 地震边坡动态临界加速度计算中抗剪强度参数概率分布分析. 地震工程学报. 2020(05): 1179-1186 . 百度学术
    24. 张云雁. 基于GS-SVM的边坡稳定性预测模型. 水利水电技术. 2020(11): 205-209 . 百度学术
    25. 黄俊,赵江,段祥睿,张洁. 基于强度折减法的抗滑桩加固边坡可靠度分析. 土木与环境工程学报(中英文). 2020(06): 11-18 . 百度学术
    26. 曾韬睿,王林峰,朱洪州. 基于修正的传递系数法的粉土质边坡冻融稳定性分析. 科学技术与工程. 2019(09): 206-213 . 百度学术
    27. 李泽发,吴震宇,卢祥,裴亮,杨哲. 抗拉强度空间变异性对重力坝地震开裂的影响分析. 工程科学与技术. 2019(04): 116-124 . 百度学术
    28. 梁庆国,房军,张晋东,张延杰,蒲建军,王飞. 兰州轨道交通扰动场地黄土浸水试验研究. 地质力学学报. 2018(06): 803-812 . 百度学术
    29. 吴志轩,杨军,邱天琦,沈兆普,梁宇钒. 基于FELA的随机场方法在考虑降雨入渗的边坡开挖稳定性分析中的应用. 地质力学学报. 2018(06): 813-821 . 百度学术

    其他类型引用(46)

计量
  • 文章访问数:  302
  • HTML全文浏览量:  14
  • PDF下载量:  173
  • 被引次数: 75
出版历程
  • 收稿日期:  2017-03-26
  • 发布日期:  2018-06-24

目录

    /

    返回文章
    返回