• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于系统分析的桩网复合地基荷载效应定量评价模型研究

吕伟华, 缪林昌, 刘成, 王曼

吕伟华, 缪林昌, 刘成, 王曼. 基于系统分析的桩网复合地基荷载效应定量评价模型研究[J]. 岩土工程学报, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018
引用本文: 吕伟华, 缪林昌, 刘成, 王曼. 基于系统分析的桩网复合地基荷载效应定量评价模型研究[J]. 岩土工程学报, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018
LÜ Wei-hua, MIAO Lin-chang, LIU Cheng, WANG Man. Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018
Citation: LÜ Wei-hua, MIAO Lin-chang, LIU Cheng, WANG Man. Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018

基于系统分析的桩网复合地基荷载效应定量评价模型研究  English Version

基金项目: 国家自然科学基金项目(51278099); 江苏省自然科学基金项目(BK20140979); 教育部博士点基金项目(20133204120014); 江苏高校优势学科建设工程项目
详细信息
    作者简介:

    吕伟华(1983- ),男,博士,讲师,主要从事地基处理方面的研究工作。E-mail: whlnjfu@njfu.edu.cn。

Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis

  • 摘要: 目前对桩-网复合地基的设计主要存在两点不足,一是计算路堤底桩土荷载分担时需要假设土拱高度,二是对桩间地基土反力的定量评价偏于保守。针对这两个问题,重点分析了路堤荷载作用下土拱效应与加筋薄膜效应,根据堤底桩土相对位移得到计算的土拱高度,推导土拱效应与薄膜效应共同作用下路堤荷载在桩与土之间的分配计算公式;考虑刚性桩桩顶与桩端位置的桩土相对位移以及桩周土对桩侧作用摩阻力存在中性点,根据应力、位移连续性条件,建立桩-网-土联合作用的桩承式加筋路堤的荷载效应计算模型并给出求解方法,通过3个工程实例对该方法进行合理性验证。结果表明,具备一定刚度的桩端下卧层时,采用本模型的计算结果与实测值比较接近,可为工程应用借鉴。
    Abstract: In the current design of geosynthetic and pile supported (GSP) composite foundation, a pre-assumed soil arch height is always utilized in load sharing calculation, and the contribution of subsoil resistance is weakened in supporting the embankment fill. To improve the above two defects, the soil arching effect and the geomembrane effect are analyzed, and then the quantitative evaluation methods are presented. In the derivation, the pile-soil differential settlements at pile top and toe are considered, and the arch height can be calculated according to the relative pile-soil displacement. Simultaneously, the neutral point is adopted in skin friction analysis, and hence a formula for the load distribution is obtained based on the mobilized shearing stress developing from bottom to top. This method can take good care of the interaction between the embankment fill, pile-reinforced area and lower underlying layer, which can consider the penetration of pile tops, interaction between piles and surrounding soil and penetration of pile ends. According to the continuity condition of stress and displacement, a load effect solution of GSP composite foundation is obtained. The present method is validated to be reasonable by comparing the analytical solutions with the FEM results and the monitoring data, and can be adopted by engineers when it comes to the situation in presence of the bearing stratum at pile tip with certain stiffness.
  • [1] 郑 刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J]. 土木工程学报, 2012, 45(2): 127-146. (ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese))
    [2] TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap door[C]// Proceeding of the First International Congress on Soil Mechanics and Foundation Engineering. Cambridge, 1936: 307-311.
    [3] MCNULTY J W. An experimental study of arching sand[R]. Vicksburg: Technical Report No. I-674, U.S. Army Engineer Waterways Experiment Station, Corp of Engineers, Mississippi, 1965.
    [4] EVANS C H. An examination of arching in granular soils[D]. Cambridge: Massachusetts Institute of Technology, 1984.
    [5] GUIDO V A, KNEUPPEL J D, SWEENY M A. Plate loading tests on geogrid-reinforced earth slabs[C]// Proceedings of the Geosynthetics’87. New Orleans, 1987: 216-225.
    [6] HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12-18.
    [7] LOW B K, TANG S K, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938.
    [8] British Standard BS 8006. Code of practice for strengthened/reinforced soils and other fills[S]. London: British Standard Institution, 1995.
    [9] KEMPFERT H G, GOBEL C, ALEXIEW D, et al. German recommendations for reinforced embankments on pile-similar elements[S]. EuroGeo3-Third European Geosynthetics Conference, Geotechnical Engineering with Geosynthetics, 2004: 279-284.
    [10] 陈云敏, 贾 宁, 陈仁朋. 桩承式路堤土拱效应分析[J]. 中国公路学报, 2004, 17(4): 1-6. (CHEN Yun-min, JIA Ning, CHEN Ren-peng. Soil arch analysis of pile-supported embankments[J]. China Journal of Highway and Transport, 2004, 17(4): 1-6. (in Chinese))
    [11] ABUSHARAR S W, ZHENG J J, CHEN B G, YIN J H. A simplified method for analysis of a piled embankment reinforced with geosynthetics[J]. Geotextiles and Geomembranes, 2009, 27(1): 39-52.
    [12] VILLARD P, GOURC J P, GIRAUD H. A geosynthetic reinforcement solution to prevent the formation of localized sinkholes[J]. Canadian Geotechnical Journal, 2000, 37(5): 987-999.
    [13] NAUGHTON P J. The significance of critical height in the design of piled embankments[C]// Proceeding of Geo-Denver 2007, New Peaks in Geotechnics, ASCE GSP 172. Denver, 2007.
    [14] 王 非, 缪林昌. 落水洞上覆路堤土工加筋设计新方法[J]. 东南大学学报(自然科学版), 2009, 39(6): 1217-1221. (WANG Fei, MIAO Lin-chang. New design method of geosynthetic-reinforced embankment over sinkholes[J]. Journal of Southeast University(Natural Science Edition), 2009, 39(6): 1217-1221. (in Chinese))
    [15] 刘吉福. 路堤下复合地基桩、土应力比分析[J]. 岩石力学与工程学报, 2003, 22(4): 674-677. (LIU Ji-fu. Analysis on pile-soil stress ratio for composite ground embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 674-677. (in Chinese))
    [16] 折学森. 软土地基沉降计算[M]. 北京: 人民交通出版社, 1998. (ZHE Xue-sen. Settlement calculation of soft foundation[M]. Beijing: China Communications Press, 1998. (in Chinese))
    [17] 董必昌, 郑俊杰. CFG 桩复合地基沉降计算方法研究[J]. 岩石力学与工程学报, 2002, 21(7): 1084-1086. (DONG Bi-chang, ZHENG Jun-jie. Study on the settlement calculation of CFG pile composite ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 1084-1086. (in Chinese))
    [18] 施建勇, 邹 坚. 深层搅拌桩复合地基沉降计算理论研究[J]. 岩土力学, 2002, 23(3): 309-320. (SHI Jian-yong, ZOU Jian. Study on calculation theory of settlement of composite ground reinforced by deep-mixing pile group[J]. Rock and Soil Mechanics, 2002, 23(3): 309-320. (in Chinese))
    [19] 雷金波. 带帽控沉疏桩复合地基试验研究及作用机理分析[D]. 南京: 河海大学, 2005. (LEI Jin-bo. Experiment study and working mechanism analysis of composite foundation with capped sparse piles to control settlement[D]. Nanjing: Hohai University, 2005. (in Chinese))
    [20] 曹卫平, 陈云敏, 陈仁朋. 考虑路堤填筑过程与地基土固结相耦合的桩承式路堤土拱效应分析[J]. 岩石力学与工程学报, 2008, 27(8): 1610-1617. (CAO Wei-ping, CHEN Yun-min, CHEN Ren-peng. Analysis of soil arching in piled embankments considering coupled effect of embankment filling and soil consolidation[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1610-1617. (in Chinese))
    [21] 赵明华, 何腊平, 张 玲. 基于荷载传递法的CFG桩复合地基沉降计算[J]. 岩土力学, 2010, 31(3): 839-844. (ZHAO Ming-hua, HE La-ping, ZHANG Ling. Settlement calculation of CFG pile composite foundation based on load transfer method[J]. Rock and Soil Mechanics, 2010, 31(3): 839-844. (in Chinese))
    [22] 饶卫国, 赵成刚. 桩-网复合地基应力比分析与计算[J]. 土木工程学报, 2002, 35(2): 74-80. (RAO Wei-guo, ZHAO Cheng-gang. The behavior of pile-net composite foundation[J]. China Civil Engineering Journal, 2002, 35(2): 74-80. (in Chinese))
    [23] 郑俊杰, 陈宝国, ABUSHARAR S W. 双向增强体复合地基桩土应力比分析[J]. 华中科技大学学报(自然科学版), 2007, 35(7): 110-113. (ZHENG Jun-jie, CHEN Bao-guo, ABUSHARAR S W. Pile-soil stress ratio of two directed reinforcement composite foundations[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition), 2007, 35(7): 110-113. (in Chinese))
    [24] 张 军, 郑俊杰, 马 强. 路堤荷载下双向增强体复合地基受力机理分析[J]. 岩土工程学报, 2010, 32(9): 1392-1398. (ZHANG Jun, ZHEN Jun-jie, MA Qiang. Mechanical performance of biaxial reinforcement composite foundation under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1392-1398. (in Chinese))
    [25] 陈昌富, 周志军. 双向增强体复合地基桩土应力比分析[J]. 岩土力学, 2009, 30(9): 2660-2666. (CHEN Chang-fu, ZHOU Zhi-jun. Analysis of pile-soil stress ratio for double reinforced composite ground[J]. Rock and Soil Mechanics, 2009, 30(9): 2660-2666. (in Chinese))
    [26] 吕伟华, 缪林昌, 王 非. 基于不完全土拱效应的土工格栅加固机制与设计方法[J]. 岩石力学与工程学报, 2012, 31(3): 632-639. (LÜ Wei-hua, MIAO Ling-chang, WANG Fei. Mechanism of geosynthetic reinforcement based on partially developed soil arch effect and design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 632-639. (in Chinese))
    [27] RANDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical Engineering, 1978, 104(12): 1465-1488.
    [28] 陈仁朋, 贾 宁, 陈云敏. 桩承式加筋路堤受力机理及沉降分析[J]. 岩石力学与工程学报, 2005, 24(23): 4358-4367. (CHEN Ren-peng, JIA Ning, CHEN Yun-min. Mechanism and settlement analysis of pile-supported and geogrid-reinforced embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4358-4367. (in Chinese))
  • 期刊类型引用(13)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 . 百度学术
    3. 王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 . 百度学术
    4. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 . 百度学术
    5. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 . 百度学术
    6. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 . 百度学术
    7. 刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 . 百度学术
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 . 百度学术
    10. 荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 . 本站查看
    11. 王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 . 本站查看
    12. 林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 . 百度学术
    13. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  226
  • HTML全文浏览量:  1
  • PDF下载量:  215
  • 被引次数: 19
出版历程
  • 收稿日期:  2014-04-21
  • 发布日期:  2014-12-25

目录

    /

    返回文章
    返回