• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

采动应力下深部煤体渗透率演化规律研究

荣腾龙, 刘克柳, 周宏伟, 关灿, 陈岩, 任伟光

荣腾龙, 刘克柳, 周宏伟, 关灿, 陈岩, 任伟光. 采动应力下深部煤体渗透率演化规律研究[J]. 岩土工程学报, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
引用本文: 荣腾龙, 刘克柳, 周宏伟, 关灿, 陈岩, 任伟光. 采动应力下深部煤体渗透率演化规律研究[J]. 岩土工程学报, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
Citation: RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015

采动应力下深部煤体渗透率演化规律研究  English Version

基金项目: 

国家自然科学基金项目 52004081

国家自然科学基金项目 51904092

国家自然科学基金项目 52174175

河南省高等学校重点科研项目 21A440005

河南理工大学博士基金项目 B2020-34

详细信息
    作者简介:

    荣腾龙(1988—),男,讲师,博士,主要从事深部煤体多场耦合及瓦斯渗流方面的研究工作。E-mail: rongtenglong@126.com

    通讯作者:

    荣腾龙, E-mail: rongtenglong@126.com

  • 中图分类号: TD712

Permeability evolution of deep coal under mining stress

  • 摘要: 为了研究深部开采工作面前方煤体的渗透属性,首先基于典型开采方式应力路径进行了不同瓦斯压力下的深部煤体渗透率测试,然后根据渗透率升降速率和单调性对渗透率的演化过程进行划分,归纳出常规三轴加载和采动应力下煤体渗透率演化过程概化模型,最后结合三向扰动应力下的深部煤体渗透率模型与二次多项式拟合关系建立了深部采动煤体全应力–应变渗透率理论模型。结果表明:典型开采方式采动应力路径下深部煤体的应力–应变曲线不存在压密阶段;峰值应力之前和之后测点的渗透率增加率上升幅度较小,而峰值点的渗透率增加率上升幅度较大;常规三轴加载的煤体渗透率曲线呈“V”字形,相应的概化模型包括下降段、峰前缓升段、急升段和峰后缓升段;采动应力下的深部煤体渗透率曲线呈倒“Z”字台阶形,相应的概化模型可划分为峰前缓升段、急升段和峰后缓升段;建立的渗透率理论模型能够表征不同开采方式下深部煤体全应力–应变过程的渗透率演化。
    Abstract: In order to investigate its seepage properties, the permeability of the coal in front of deep working face under different gas pressures is tested based on the mining stress path of typical mining layouts. Subsequently, the permeability evolution is divided according to the rate and monotonicity of permeability variation. Two conceptual permeability models for the coal under different stress paths are obtained. One is about the conventional triaxial loading, and the other is about the mining stress path. Moreover, according to the permeability model for deep coal under triaxial disturbance stress and the quadratic polynomial fitting relationship, a theoretical permeability model for the deep coal in complete stress-strain process is developed. The test results show that there is no compaction stage in the stress-strain curves of the coal under typical mining stress. The increase rate of permeability at the testing points before and after the peak stress is small, but that at the peak stress point is very large. The permeability curve of the coal under the conventional triaxial loading is V-shaped. The conceptual permeability model under the conventional triaxial loading can be divided into decreasing section, slow increasing section before the peak, sharp increasing section and slow increasing section after the peak. The permeability curve of the deep coal under mining stress is inverted Z-shaped. The conceptual permeability model under the mining stress path can be divided into slow increasing section before the peak, sharp increasing section and slow increasing section after the peak. Finally, it is validated that the developed theoretical permeability model can evaluate the permeability evolution of the deep coal under different mining layouts.
  • 改革开放以来,中国高土石坝筑坝技术的快速提升,为满足不断增长的能源需求和改善能源结构的重要选择,一大批大型水利工程已建成或者在建,如糯扎渡、双江口、如美等300 m级高土石坝[1],但是这些高坝大多数位于中国西南地震强度和频率很高的区域,一旦遭受强震失事,将会极大损害人民生命及财产安全[2]。因此实时监测大坝的健康状况,并基于大坝真实特性分析大坝抗震安全是水电行业高度关注的关键性问题,其中大坝抗震安全动力分析主要采用有限元法,而坝体的模态参数,包括频率、阻尼比等,以及动力模型中参数等反映坝体的动态特征[3],是更新大坝抗震分析有限元模型的重要参数,也是大坝在长期运行期间健康状况的评价指标。这些参数一般通过室内试验、现场试验或借鉴其他工程的参数确定,然而由于室内和现场条件的不确定性以及不同工程场地的差异,通过上述方法确定的参数和实际值往往会存在差异[4],因此这些参数的合理选择和识别对于抗震安全十分重要。

    许多学者基于地震记录和强迫振动试验进行大坝的模态参数识别。Alves等[5]采用MODE-ID方法,基于地震数据确定了Pacoima拱坝的前两阶振动模式。Loh等[6-7]采用带外源输入的自回归(auto regressive eXogenous, ARX)模型算法,基于强迫振动数据和地震记录识别了翡翠拱坝的模态参数。Yang等[8]和李帅等[9]基于地震数据采用ARX模型和频域法识别了二滩拱坝的模态参数。谯雯等[10]和Cheng等[3]基于地震数据,分别采用希伯特-黄变换方法和矢量自回归滑动平均模型模型对水口重力坝进行了模态参数识别。综上所述,可以看出模态参数的识别研究主要在于混凝土坝中,鲜有基于地震数据对土石坝进行模态识别。然而位于强震地区的一些土石坝也获得了大量的地震数据[11-16],充分利用这些地震资料进行土石坝的模态参数识别,对土石坝的抗震安全评价有很重要的意义。

    目前,主要有频域分解法和时域类等方法应用于基于环境激励的模态参数识别中[17]。其中在频域内容易造成个别频率丢失,而时域类方法具有较好的识别精度和鲁棒性强等优点,并且随着计算机技术的快速发展,时域内根据结构的振动响应进行模态识别得到了大量应用[18-23]。高土石坝是一种规模宏大的工程结构,其自由度高,模态密集。时域内的协方差驱动的随机子空间(stochastic subspace identification, SSI)可以较好识别密集模态,其假定激励源为高斯白噪声,在桥梁和高层建筑等结构广泛应用[18,22-25],本文将其应用于高土石坝模态参数识别,取得了较好计算精度。

    本文基于高土石坝的地震观测数据,提出了一种基于协方差驱动的随机子空间模型和改进的稳定图,以及谱系聚类的模态参数自动识别方法。首先,通过假定坝体上各个测点的监测数据满足白噪声序列来构造随机子空间模型;然后,构建并计算多个不同维度的Hankel矩阵所对应的SSI模型来获得稳定图,这样可以较好地剔除虚假模态,并且可以获得较为清晰的稳定轴;最后,采用谱系聚类分析自动准确识别出模态参数。通过两个数值算例对提出的模态识别方法进行了验证,获得了较好的结果,并将其应用于糯扎渡心墙堆石坝模态参数识别,验证了所提出的方法在工程应用上的可靠性和有效性,可以为高土石坝抗震安全评价提供有效的动力计算依据。

    对于一个n维自由度系统,其离散型随机状态空间模型为

    xk+1=Axk+wk ,yk=Cxk+vk } (1)

    式中 xkRn×1,ykRl×1分别为系统离散时间的状态矢量x和输出矢量yk时刻的值,l为系统输出的数目;ARn×n,CRl×n分别为系统状态空间方程的状态矩阵和输出矩阵;wkRn×1,vkRl×1分别为系统建模过程噪声w和测量噪声vk时刻的值,其亦为均值为零的白噪声。

    定义输出协方差矩阵Ri

    Ri=E[yk+iyTk], (2)

    定义状态-输出协方差矩阵G

    G=E[xk+1yTk], (3)

    可证明如下关系成立:

    Ri=CAi1G (4)

    式(1)~(4)详细推导见文献[19]。

    定义Hankel矩阵YpRli×j,YfRli×j

    Yp=1j[y0y1y2yj1y1y2y3yjy2y3y4yj+1yi1yiyi+1yi+j1], (5)
    Yf=1j[yiyi+1yi+2yi+jyi+1yi+2yi+3yi+j+1yi+2yi+3yi+4yi+j+2y2i1y2iy2i+1y2i+j1], (6)
    Yf+=1j[yi+1yi+2yi+3yi+j+1yi+2yi+3yi+4yi+j+2y2i1y2iy2i+1y2i+j+1y2iy2i+1y2i+2y2i+j] (7)

    式中 i,j分别为矩阵的行块数和列块数,理论上jl为通道数,在本文中为监测点的个数,假定地震激励为白噪声序列;则yi表示第i时刻各通道记录的输出信号构成的系列,即yiRl×1;下标p,f分别表示“past”,“future”。

    由(5)~(7)可得Toeplitz矩阵T1|iRli×li

    T1|i=YfYTp, (8)
    T2|i+1=Yf+YTp (9)

    结合式(2)中协方差矩阵的定义,式(8)为

    T1|i=[RiRi1Ri2R1Ri+1RiRi1R2Ri+2Ri+1RiR3R2i1R2i2R2i3Ri] (10)

    此外,结合式(3)和(4),Toeplitz矩阵T1|i可进一步改写为

    T1|i=OiMi (11)

    式中,Oi=[CCACAi1]Rli×n为观测矩阵,Mi= (Ai1G  Ai2G    G)Rn×la为控制矩阵。

    对Toeplitz矩阵T1|i进行SVD分解可得

    T1|i=[U1U2][S100S2][VT1VT2]U1S1VT1, (12)

    式中,U1Rli×n,V1Rli×n均为正交矩阵,S1= diag[σs],σ1σ2σn0为降序排列的n个主奇异值对角阵。

    联立式(11),(12)可求得矩阵的估计值:

    Oi=U1S1/21 ,Mi=S1/21VT1 } (13)

    式中,Oi的前l行为输出矩阵C。由式(9),(11)可得

    T2|i+1=OiAMi (14)

    将式(13)代入式(14)可得

    A=(Oi)+T2|i+1(Mi)+=(S1/21UT1)T2|i+1(V1S1/21), (15)

    式中,()+表示伪逆运算。

    对离散系统状态矩阵A进行特征值分解

    A=ϕΛϕ1, (16)

    式中,Λ=diag(zs)s=1,2,3,…,n)为由离散时间复特征值zs组成的n阶对角矩阵,ϕ为复特征向量组成的矢量矩阵。实际的系统是连续的,设λszs对应的第s个连续时间特征值,Δt为采样间隔,则有λs=lnzsΔt

    系统的固有频率和阻尼比进而可以表示为

    fi=|λi|2π  ,ξi=Re(λi)|ωi|  } (17)

    式中,Re表示取实部。

    稳定图作为一种有效剔除虚假模态的工具,假定系统有不同的阶次,通过计算可以得到每个阶次的模态参数,然后对各个阶次按照提前设置的条件进行参数识别,对于某一模态频率出现次数较多的点则为稳定点,由稳定点进而组成稳定轴。然而,在实际工程中,由于有时候激励源为地震波,此外噪声的干扰和结构的复杂性,传统的稳定图中仍会出现虚假模态,此外计算得到稳定极点较少时,难以获得清晰的稳定轴,对工程人员辨识模态参数造成干扰。

    为能有效地移除虚假极点,同时避免一些稳定极点在某一维度Hankel矩阵中未识别到,造成稳定轴不清楚,本文通过构造多组不同维度的Hankel矩阵(根据经验,一般取5~10组就可以获得较好的结果),将不同组辨识的结果在同一阶次进行两两对比,来剔除不稳定的极点,主要依据是稳定极点受构造矩阵行数影响较小,而计算模态或虚假模态受其影响较大,基本思路:假设有L组矩阵,在系统阶次p时,首先根据第i组(1≤iL)中第m个极点对应的模态参数组合(fip,m,ξip,m),在第j组(1≤jL)中选定与第i组中所选极点的固有频率最近极点n,其对应的模态参数组合(fjp,n,ξjp,n),然后按照式(18)进行计算,在两两计算循环结束后,满足条件式(18)最多的点作为稳定极点予以保留。

    (fimfjnΔf)2+(ξimξjnΔξ)2+(1MAC(Φim,Φjn)Δmac)2<1 ,Δf=min(δfmax(fim,fjn)) ,Δξ=min(δξmax(ξim,ξjn)) } (18)

    式中 f,ξ,Φ分别为极点处的固有频率、阻尼比和模态振型;MAC(Φim,Φjn)ΦimΦjn模态置信准则值;δf为频率相对偏差,取值5%;δξ为阻尼比相对偏差,取值10%;Δmac为模态置信准则值绝对偏差,取值2%。

    借助谱系聚类的方法对挑选出的稳定极点进行自动选择,将距离在一定范围内的数据进行聚类,认为同一类中的数据属于同一模态,最后选择元素个数大于一定值的类作为识别结果。

    步骤(1):假设由SSI方法识别得到的稳定极点总数为N,令N个样本自成一类。通过计算各极点之间的距离(相似性)dij

    dij=(fimfjnΔf)2+(ξimξjnΔξ)2+(1MAC(Φim,Φjn)Δmac)2, (19)

    即可得到初始距离矩阵D0

    步骤(2):通过判断距离矩阵D0中的各数值大小来实现相同模态的聚类,设定距离阈值为1,即当dij1时,则认为第FiFj的模态为同一类,将其合并为新的一类Fij。并与其余类建立新的分类。

    步骤(3):通过最短距离法得到新的距离矩阵D1[20],然后跳转步骤(2),重复计算并合并,当Dk的最小分量超过1,算法停止,此时将N个样本分成了k类。

    步骤(4):统计每一类中聚类元素的个数,并设定聚类数目阈值X,若每一类中元素个数大于X,则判定为稳定极点,予以保留,并将其绘制于稳定图中。最后采用每一类中统计均值作为最终的模态参数估计值。其中,X=N/3,N为系统阶数。

    为了讨论随机子空间法和模态参数自动识别方法的可靠性,本文采用一个双自由度系统和一个均质堆石坝在非平稳随机激励下的动力反应进行模态参数识别两个算例。

    双自由度模型如图1所示,利用Newmark-β方法求解地震情况下各质点的反应。模型参数分别为[26]:质量m1=0.050 ts2/cm,m2=0.055 ts2/cm;刚度k1=k2=120 t/cm;阻尼系数c1=1.0 ts/cm,c2= 0.6 ts/cm。根据模型参数,通过特征值法计算系统的理论模态参数,结构的固有频率分别为f1=4.653 Hz,f2=12.458 Hz;振型阻尼比ξ1=0.107,ξ2=0.234。地面输入的非平稳激励为EI Centro波南北向地震动记录,如图2所示。

    图  1  双自由度系统模型
    Figure  1.  Two degrees of freedom system model
    图  2  EI Centro地震波
    Figure  2.  EI Centro seismic waves

    为满足协方差驱动的随机子空间法的识别需求,模型Hankel矩阵的行数iN/l,且列数j20i[17]。在算例中,构造协方差的振动数据是两个质点的水平向的加速度,因此通道数l=2。分析时最大阶次为100,则Yp矩阵的最小行数imin为50。假定每个通道信号的总采样长度为L,则利用所有数据点来构造矩阵YpYp+1的列数为j=L-2i,输入的非平稳激励是EI centro地震波前30 s数据,其采用长度L=400 Hz×30 s=12000,取构造矩阵行数i=60,则j=11880,利用随机子空间识别方法,得到传统稳定图如图3所示。由图3可以看出,存在较多的虚假极点,并且出现了虚假的稳定轴。采用第2节提出的方法对虚假极点进行剔除生成清晰的稳定图,并自动识别模态参数,分析时构造5组不同行数的Hankel矩阵,矩阵的行数为i=50+randn(50,5),获得的稳定图如图4所示,可以看出虚假极点基本被剔除,并且相对于原始稳定图来说稳定轴更为连续,较好地避免了稳定极点的在某一组计算时的丢失;为了较好看出各个频率下的阻尼比关系,并以频率和阻尼比建立簇分析图,如图5所示,稳定点被聚集到2个簇中;采用参数统计均值法计算模态结果,如表1所示,可以看出识别得到的频率值和阻尼比与理论值十分接近,说明本文方法对激励源为地震波情况下的结构进行模态参数识别具有较好的精度。

    图  3  原始稳定图(i=60)
    Figure  3.  Original stable graph
    图  4  剔除虚假极模态后稳定图
    Figure  4.  Stable graph after removing false polar modes
    图  5  频率–阻尼比簇分析图
    Figure  5.  Cluster analysis chart of frequency-damping ratio
    表  1  双自由度模态参数识别结果
    Table  1.  Identified model parameters of two degrees of freedom system model
    振型频率/Hz阻尼比
    理论值计算值理论值计算值
    1阶4.6534.6140.1070.105
    2阶12.45812.8560.2340.246
    下载: 导出CSV 
    | 显示表格

    均质堆石坝断面有限元网格如图6所示,坝高150 m,上下游坝坡均为1∶2。为获得动力计算需要的初始应力场,采用邓肯-张E-B模型进行静力填筑计算,模型参数[27]ρ=2.2 g/cm-3,φ0=51.8,Δφ=10.4°,K=1100,n=0.35,Rf=0.82,Kb=600,m=0.1。动力计算采用等效黏弹性模型,计算参数:K=3000,n=0.5。堆石料的归一化动剪应变和阻尼比与动剪应变的关系采用孔宪京等[28]建议的平均值,其中阻尼比在小应变10-5时约为0.02。有限元计算得到的大坝前四阶频率见表2。地面输入的非平稳激励仍为EI Centro波南北向地震动记录,由于堆石坝在弱震时近似线弹性变化,因此调整峰值为0.05 m/s2进行动力计算。

    图  6  堆石坝网格图
    Figure  6.  FEM mesh of rockfill dam
    表  2  均质堆石坝模态参数识别结果
    Table  2.  Identified model parameters of homogeneous rockfill dam
    振型频率/Hz阻尼比
    计算值FEM计算值FEM
    1阶1.111.090.0230.020
    2阶1.751.760.0160.020
    3阶1.931.960.0220.020
    4阶2.202.240.0150.020
    下载: 导出CSV 
    | 显示表格

    坝体下游坝坡按照等高设置3个测点,利用3个测点的水平向加速度记录作为输入,构造Hankel矩阵,通道数l=3,每个通道长度为30 s,频率为400 Hz,矩阵行数i=100,j=11800,通过协方差驱动的随机子空间法可以获得图7所示的稳定图,可以看出原始的稳定图中出现了较多的虚假极点,采用第2节提出的剔除虚假极点和谱系聚类筛选法,分析时构造5组不同行数的Hankel矩阵,矩阵的行数为i=100+ randn(100,5),获得图8所示的稳定图,可以看出不仅剔除了虚假极点,还使稳定图中的稳定轴相对于原始稳定图更为清晰连续。图9是频率和阻尼比的簇分析图。最终的模态参数统计均值如表2所示。识别得到的结果和有限元计算值十分接近,说明本文方法对激励源为地震波情况下的堆石坝进行模态参数识别也具有较好的精度。

    图  7  原始稳定图(i=100)
    Figure  7.  Original stable graph (i=100)
    图  8  剔除虚假极模态后稳定图
    Figure  8.  Stable graph after removing false polar modes
    图  9  频率–阻尼比簇分析图
    Figure  9.  Cluster analysis chart of frequency-damping ratio

    糯扎渡水电站位于澜沧江下游普洱市思茅区和澜沧县交界处,坝址区位于青藏地震区的滇西南地震带,区内地震活动比较强烈,其地震基本烈度为Ⅶ。该工程主体挡水结构为高261.5 m的心墙堆石坝,是目前国内已建成的最高的土石坝。坝顶高程824.1 m,坝顶长630 m,宽18 m,上游坡度比为1.9∶1,下游坡度比为1.8∶1,大坝水库正常蓄水位812 m。为了监测大坝受地震情况下的影响,根据结构物对地震的反应特征,在大坝典型断面安置了若干个强震监测仪,坝体典型断面及强震仪布置如图10所示,在典型断面坝顶是T2测点,下游坝坡780高程处是T6测点,下游坝坡高程701高程处是T7测点,下游坝坡高程626高程处是T8测点,这些测点在2014年10月7日发生的6.6级景谷地震中均测到并记录了完整的加速度时程,图11给出了各个测点顺河向的地震动记录。

    图  10  坝体典型断面及强震仪布置图
    Figure  10.  Typical cross-section with material zones in Nuozhadu core-wall rockfill dam
    图  11  坝体T2、T6、T7、T8测站的顺河向加速度记录
    Figure  11.  Downstream acceleration records of dam body at monitoring points T2, T6, T7 and T8

    选取坝体上4个测点的顺河向加速度记录作为输入,构造Hankel矩阵,通道数l=4,每个通道长度为35 s,采用频率为400 Hz,矩阵行数i=60,j=13880,通过协方差驱动的随机子空间法可以获得图12所示的稳定图,可以看出原始的稳定图中出现了较多的虚假极点,对于模态识别增加了干扰。采用第2节提出的剔除虚假极点和谱系聚类筛选法,分析时构造5组不同行数的Hankel矩阵,矩阵的行数为i=50+ randn(50,5),获得图13所示的稳定图,在0~4 Hz范围内,有4类模态参数被识别出来。图14是频率和阻尼比的簇分析图,可以清楚地看出不同阶次下频率和阻尼比的分布情况。最终的模态参数统计均值如表3所示。此外并和有限元分析结果对比,分别采用相互作用模型和刚性边界有限元模型进行分析,相互作用模型如图15所示,刚性边界模型为图中去除地基部分模型,并采用文献[12]根据坝体实测响应反演得到的坝料参数,采用“直接滤频法”求解特征方程,得到坝体的前四阶坝体频率,如表3所示。

    图  12  糯扎渡大坝原始稳定图
    Figure  12.  Original stable graph of Nuozhadu dam
    图  13  糯扎渡大坝剔除虚假极模态后稳定
    Figure  13.  Stable graph after removing false polar modes
    图  14  糯扎渡频率–阻尼比簇分析图
    Figure  14.  Cluster analysis chart of frequency-damping ratio
    表  3  糯扎渡大坝模态参数识别结果
    Table  3.  Identified model parameters of Nuozhadu dam
    振型频率/Hz阻尼比
    计算值FEM1FEM2计算值FEM
    1阶1.151.101.220.0510.04
    2阶1.351.271.420.0340.04
    3阶1.831.541.730.0270.04
    4阶2.371.741.960.0430.04
    注:FEM1为相互作用有限元模型,FEM2为刚性边界模型。
    下载: 导出CSV 
    | 显示表格
    图  15  糯扎渡大坝三维有限元模型
    Figure  15.  3D FEM of Nuozhadu dam

    表3中可以看出,SSI法识别的前三阶模态频率基本上是一致的,第四阶模态频率较大。分析产生的原因可能是在弱震情况下,很难激发坝体的某些高阶振型,对于土石坝这种密频结构在坝体响应中未能完整体现。进一步计算刚性边界有限元模型较高阶频率,得到第5阶频率为2.13 Hz,第6阶频率为2.30 Hz,对比可以发现在景谷地震中未能识别出实际的第4和5阶振型。但是在土石坝进行抗震稳定性分析时,一般比较关心的前两阶频率,SSI方法可以较好地识别出坝体基频和第二阶频率,可以为大坝抗震安全性评价提供一定的依据。此外有限元模拟时阻尼比计算采用的是糯扎渡大坝室内动三轴试验得到的阻尼比与动剪应变幅值之间的关系曲线,根据试验曲线在动剪应变幅值为10-5时堆石料阻尼比约为0.04,心墙料阻尼比约为0.03[29],考虑到堆石料占大坝主要部分,认为大坝在弱震情况下阻尼比为0.04。对比识别的模态参数,坝体前几阶的阻尼比都在0.05左右,和室内试验值也较为接近,符合坝体在弱震情况下的一般规律,也说明景谷地震对坝体的影响不大,处于弹性范围内。

    楚金旺等[30]通过考虑三维河谷效应对国内外20余座土石坝的实测基本自振周期资料进行了统计分析,提出了大坝一阶自振周期计算公式,根据此公式糯扎渡大坝的一阶自振频率约为1.1 Hz。毛文娟[31]对不同坝坡和河谷地形因素研究指出300级均质坝自振频率在0.84~1.06 Hz,由于其所采用地震工况峰值为0.2g,地震时坝体进入非线性使得自振频率偏小。杨玉生等[32]对300 m级双江口心墙堆石坝模型试验研究指出双江口原型坝在弱震情况下一阶自振频率在0.8~1.2 Hz。通过对比以上学者研究,本文识别得到的糯扎渡心墙堆石坝的自振频率在合理范围内,这也说明本文提出的高土石坝模态参数识别方法是合理的。

    本文利用地震情况下坝体测点反应构建协方差驱动的随机子空间模型,通过构造多组不同维度的Hankel矩阵,不仅可以很好地剔除虚假模态,同时也避免了稳定极点的在某一组计算时的丢失,采用谱系聚类的筛选方法,可以有效的识别坝体的固有频率和阻尼比,并且实现了物理模态参数的自动获取,规避了人为选择引入的误差,保障了识别结果的稳定性。

    在两个数值算例中,改进后的稳定图很好地剔除了虚假极点,也使得稳定轴较为清晰,并且获得的模态参数与模型的实际模态分析结果较为一致,说明在利用地震波的非平稳环境激励下,本文方法仍可以获得较好的模态参数识别精度。

    根据景谷地震的地震监测数据,将其应用于糯扎渡心墙堆石坝的模态参数识别,较好地识别坝体的固有频率和阻尼比,可以进一步根据模态参数来识别坝体动力参数,为土石坝抗震安全评价提供一种新的方法。

    随着大坝高度向300 m级建设,在强震情况下大坝的监测在水利工程中受到很大的关注,在本文的基础上进一步研究基于强震记录的大坝模态识别方法,可以为大坝运行期的健康监测和抗震安全分析提供基础,也具有重要的理论意义和工程应用价值。

  • 图  1   煤体采动应力变化[8]

    Figure  1.   Stress evolution of coal under mining[8]

    图  2   典型开采方式的采动应力路径[8]

    Figure  2.   Stress paths under typical mining layouts[8]

    图  3   深部煤体试样

    Figure  3.   Tested samples of deep coal

    图  4   高温高压三轴流变仪

    Figure  4.   Triaxial test system with high temperature and pressure

    图  5   采动应力渗透试验测点布置

    Figure  5.   Layout of testing points for permeability tests under mining stress

    图  6   采动应力下深部煤体渗透率结果

    Figure  6.   Permeability evolution of deep coal under mining stress

    图  7   常规三轴加载下煤体渗透率试验结果

    Figure  7.   Permeability evolution of coal under conventional triaxial loading

    图  8   常规三轴试验渗透率概化模型

    Figure  8.   Conceptual permeability model for coal under conventional triaxial loading

    图  9   采动应力下渗透率概化模型

    Figure  9.   Conceptual permeability model for coal under mining stress

    图  10   不同开采方式下深部煤体渗透率拟合结果

    Figure  10.   Permeabilities of deep coal under different mining layouts

    表  1   不同开采方式下采动煤体渗透率测试

    Table  1   Permeability tests of mining-induced coal under different mining layouts

    序号 取样地点及文献 试验模拟埋深/m 模拟原岩应力/MPa 测试气体类型 年份
    1 平煤八矿己14-14120工作面[9] 360 9 CH4 2012年
    2 晋煤赵庄矿3号煤层[10] 360 9 CH4 2012年
    3 平煤十矿己15-24080工作面[11] 600 15 CH4 2014年
    4 川煤白皎矿2481工作面[12] 1000 25 CH4 2016年
    5 南川宏能煤业矿井西翼K1煤层[13] 200 5 CH4 2016年
    6 白皎矿#4煤层[14] 1000 25 CH4 2016年
    7 兖州盆地[15] 1000 25 CH4 2017年
    8 平煤八矿某工作面[16] 600 15 N2 2017年
    9 平煤己15煤层[17] 320 8 CH4 2020年
    下载: 导出CSV

    表  2   不同气体压差下深部采动煤体力学特征结果

    Table  2   Mechanical results of deep coal under different gas pressures

    试件编号 气体压差/MPa 峰值应力/MPa 峰值应变/%
    P1 0.5 52.53 0.92
    P2 1.0 48.08 0.67
    P3 1.5 49.82 0.71
    P4 2.0 48.05 0.68
    下载: 导出CSV

    表  3   峰值应力前后测点渗透率增加率

    Table  3   Increase rates of permeability before and after peak stress

    试件编号 ηbcp ηcp ηacp
    P1 1.00 37.24 44.64
    P2 0.56 7.30 9.31
    P3 0.79 8.75 9.19
    P4 5.10 41.51 57.39
    下载: 导出CSV

    表  4   煤体基本参数列表[14, 32-33]

    Table  4   Basic parameters of coal[14, 32-33]

    孔隙率ϕ0/% 煤体泊松比vb 内摩擦角/(°) 煤体弹性模量Eb0/GPa 裂隙弹性模量Ef0/GPa εL/% PL/MPa FI Biot系数αb
    10.11 0.22 25.12 6.84 3.00 0.52 3.34 0.20 1.00
    下载: 导出CSV

    表  5   峰后缓升段渗透率拟合系数

    Table  5   Fitting coefficients in slowly increasing zone after peak stress

    开采方式 χ1 χ2 χ3 R2
    保护层 7.195×10-15 2.531×10-7 1.878 0.9894
    放顶煤 -2.195×10-15 1.578×10-7 1.754 0.9253
    下载: 导出CSV
  • [1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1–6. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601002.htm

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society, 2016, 41(1): 1–6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601002.htm

    [2] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采: 理论、技术与工程[J]. 煤炭学报, 2014, 39(8): 1391–1397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm

    XIE He-ping, ZHOU Hong-wei, XUE Dong-jie, et al. Theory, technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society, 2014, 39(8): 1391–1397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm

    [3] 申建, 秦勇, 傅雪海, 等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(9): 1470–1476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409022.htm

    SHEN Jian, QIN Yong, FU Xue-hai, et al. Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J]. Natural Gas Geoscience, 2014, 25(9): 1470–1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409022.htm

    [4]

    ZHOU H W, WANG L J, RONG T L, et al. Creep-based permeability evolution in deep coal under unloading confining pressure[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 185–196. doi: 10.1016/j.jngse.2019.03.010

    [5] 王辰霖, 张小东, 李贵中, 等. 循环加卸载作用下不同高度煤样渗透性试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2299–2308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810011.htm

    WANG Chen-lin, ZHANG Xiao-dong, LI Gui-zhong, et al. Experimental study on the permeability of coal samples with different heights under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2299–2308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810011.htm

    [6] 贾恒义, 王凯, 王益博, 等. 围压循环加卸载作用下含瓦斯煤样渗透特性试验研究[J]. 煤炭学报, 2020, 45(5): 1710–1718. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005016.htm

    JIA Heng-yi, WANG Kai, WANG Yi-bo, et al. Permeability characteristics of gas-bearing coal specimens under cyclic loading-unloading of confining pressure[J]. Journal of China Coal Society, 2020, 45(5): 1710–1718. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005016.htm

    [7] 刘超, 黄滚, 赵宏刚, 等. 复杂应力路径下原煤力学与渗透特性试验[J]. 岩土力学, 2018, 39(1): 191–198. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801024.htm

    LIU Chao, HUANG Gun, ZHAO Hong-gang, et al. Tests on mechanical and permeability characteristics of raw coal under complex stress paths[J]. Rock and Soil Mechanics, 2018, 39(1): 191–198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801024.htm

    [8] 谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1067–1074. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    XIE He-ping, ZHOU Hong-wei, LIU Jian-feng, et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067–1074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    [9] 于文静. 典型开采条件下含瓦斯煤体渗透特性研究[D]. 北京: 中国矿业大学(北京), 2012.

    YU Wen-jing. Study on Permeability Characteristics of Coal Under Three Typical Mining Conditions[D]. Beijing: China University of mining and Technology(Beijing), 2012. (in Chinese)

    [10] 许江, 李波波, 周婷, 等. 加卸载条件下煤岩变形特性与渗透特征的试验研究[J]. 煤炭学报, 2012, 37(9): 1493–1498. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209016.htm

    XU Jiang, LI Bo-bo, ZHOU Ting, et al. Experimental study of coal deformation and permeability characteristics under loading-unloading conditions[J]. Journal of China Coal Society, 2012, 37(9): 1493–1498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209016.htm

    [11] 李文璞. 采动影响下煤岩力学特性及瓦斯运移规律研究[D]. 重庆: 重庆大学, 2014.

    LI Wen-pu. Research on Mechanical Characteristics and Gas Migration Law of Coal Influenced by Mining[D]. Chongqing: Chongqing University, 2014. (in Chinese)

    [12] 赵宏刚, 张东明, 刘超, 等. 加卸载下原煤力学特性及渗透演化规律[J]. 工程科学学报, 2016, 38(12): 1674–1680. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612003.htm

    ZHAO Hong-gang, ZHANG Dong-ming, LIU Chao, et al. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions[J]. Chinese Journal of Engineering, 2016, 38(12): 1674–1680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612003.htm

    [13] 蒋长宝, 段敏克, 尹光志, 等. 不同含水状态下含瓦斯原煤加卸载试验研究[J]. 煤炭学报, 2016, 41(9): 2230–2237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609012.htm

    JIANG Chang-bao, DUAN Min-ke, YIN Guang-zhi, et al. Loading-unloading experiments of coal containing gas under the condition of different moisture contents[J]. Journal of China Coal Society, 2016, 41(9): 2230–2237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609012.htm

    [14]

    ZHANG Z T, ZHANG R, XIE H P, et al. An anisotropic coal permeability model that considers mining-induced stress evolution, microfracture propagation and gas sorption-desorption effects[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 664–679. doi: 10.1016/j.jngse.2017.08.028

    [15]

    JU Y, ZHANG Q G, ZHENG J T, et al. Experimental study on CH4 permeability and its dependence on interior fracture networks of fractured coal under different excavation stress paths[J]. Fuel, 2017, 202: 483–493. doi: 10.1016/j.fuel.2017.04.056

    [16] 薛熠. 采动影响下损伤破裂煤岩体渗透性演化规律研究[D]. 徐州: 中国矿业大学, 2017.

    XUE Yi. Study on the Permeability Evolution of Fractured Coal under the Influence of Mining[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)

    [17]

    XIE J, GAO M Z, ZHANG R, et al. Gas flow characteristics of coal samples with different levels of fracture network complexity under triaxial loading and unloading conditions[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107606. doi: 10.1016/j.petrol.2020.107606

    [18]

    PAN Z J, CONNELL L D. Modelling permeability for coal reservoirs: a review of analytical models and testing data[J]. International Journal of Coal Geology, 2012, 92: 1-44. doi: 10.1016/j.coal.2011.12.009

    [19]

    XUE S, ZHENG C S, KIZIL M, et al. Coal permeability models for enhancing performance of clean gas drainage: a review[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108283. doi: 10.1016/j.petrol.2020.108283

    [20] 肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209–2219. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112007.htm

    XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209–2219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112007.htm

    [21]

    ZHOU H W, ZHAO J W, SU T, et al. Characterization of gas flow in backfill mining-induced coal seam using a fractional derivative-based permeability model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104571. doi: 10.1016/j.ijrmms.2020.104571

    [22]

    XUE Y, GAO F, GAO Y N, et al. Quantitative evaluation of stress-relief and permeability-increasing effects of overlying coal seams for coal mine methane drainage in Wulan coal mine[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 122–137. doi: 10.1016/j.jngse.2016.04.029

    [23]

    LI J H, LI B B, CHENG Q Y, et al. Characterization of anisotropic coal permeability with the effect of sorption-induced deformation and stress[J]. Fuel, 2022, 309: 122089. doi: 10.1016/j.fuel.2021.122089

    [24] 周宏伟, 荣腾龙, 牟瑞勇, 等. 采动应力下煤体渗透率模型构建及研究进展[J]. 煤炭学报, 2019, 44(1): 221–235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901022.htm

    ZHOU Hong-wei, RONG Teng-long, MOU Rui-yong, et al. Development in modeling approaches to mining-induced permeability of coals[J]. Journal of China Coal Society, 2019, 44(1): 221–235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901022.htm

    [25] 荣腾龙, 周宏伟, 王路军, 等. 三向应力条件下煤体渗透率演化模型研究[J]. 煤炭学报, 2018, 43(7): 1930–1937. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm

    RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, et al. Coal permeability model for gas movement under the three-dimensional stress[J]. Journal of China Coal Society, 2018, 43(7): 1930–1937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm

    [26] 王广荣, 薛东杰, 郜海莲, 等. 煤岩全应力-应变过程中渗透特性的研究[J]. 煤炭学报, 2012, 37(1): 107–112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201026.htm

    WANG Guang-rong, XUE Dong-jie, GAO Hai-lian, et al. Study on permeability characteristics of coal rock in complete stress-strain process[J]. Journal of China Coal Society, 2012, 37(1): 107–112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201026.htm

    [27] 魏建平, 王登科, 位乐. 两种典型受载含瓦斯煤样渗透特性的对比[J]. 煤炭学报, 2013, 38(增刊1): 93–99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1016.htm

    WEI Jian-ping, WANG Deng-ke, WEI Le. Comparison of permeability between two kinds of loaded coal containing gas samples[J]. Journal of China Coal Society, 2013, 38(S1): 93–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1016.htm

    [28]

    ZHENG C S, KIZIL M S, AMINOSSADATI S M, et al. Effects of geomechanical properties of interburden on the damage-based permeability variation in the underlying coal seam[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 42–51. doi: 10.1016/j.jngse.2018.04.017

    [29] 薛熠, 高峰, 高亚楠, 等. 采动影响下损伤煤岩体峰后渗透率演化模型研究[J]. 中国矿业大学学报, 2017, 46(3): 521–527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703011.htm

    XUE Yi, GAO Feng, GAO Ya-nan, et al. Research on mining-induced permeability evolution model of damaged coal in post-peak stage[J]. Journal of China University of Mining & Technology, 2017, 46(3): 521–527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703011.htm

    [30] 荣腾龙, 周宏伟, 王路军, 等. 开采扰动下考虑损伤破裂的深部煤体渗透率模型研究[J]. 岩土力学, 2018, 39(11): 3983–3992. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811010.htm

    RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, et al. A damage-based permeability models of deep coal under mining disturbance[J]. Rock and Soil Mechanics, 2018, 39(11): 3983–3992. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811010.htm

    [31] 尹光志, 黄启翔, 张东明, 等. 地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 336–343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002017.htm

    YIN Guang-zhi, HUANG Qi-xiang, ZHANG Dong-ming, et al. Test study of gas seepage characteristics of gas-bearing coal specimen during process of deformation and failure in geostress field[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 336–343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002017.htm

    [32] 齐消寒. 近距离低渗煤层群多重采动影响下煤岩破断与瓦斯流动规律及抽采研究[D]. 重庆: 重庆大学, 2016.

    QI Xiao-han. Research on the Coal Rock Failure and Methane Flow Laws of Short-Distance and Low Permeability Coal Seams Group under the Effect of Repeated Excavation[D]. Chongqing: Chongqing University, 2016. (in Chinese)

    [33] 白鑫. 液态二氧化碳相变射孔致裂煤岩体增透机理及应用研究[D]. 重庆: 重庆大学, 2019.

    BAI Xin. Research on Mechanism and Application of Liquid Carbon Dioxide Phase Change Jet Fracturing Coal Seam to Increase Gas Permeability[D]. Chongqing: Chongqing University, 2019. (in Chinese)

  • 期刊类型引用(7)

    1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 . 百度学术
    2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
    3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 . 百度学术
    4. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 . 百度学术
    5. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 . 百度学术
    6. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 . 百度学术
    7. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 . 百度学术

    其他类型引用(6)

图(10)  /  表(5)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  29
  • PDF下载量:  117
  • 被引次数: 13
出版历程
  • 收稿日期:  2021-04-08
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

/

返回文章
返回