• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LÜ Wei-hua, MIAO Lin-chang, LIU Cheng, WANG Man. Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018
Citation: LÜ Wei-hua, MIAO Lin-chang, LIU Cheng, WANG Man. Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2291-2299. DOI: 10.11779/CJGE201412018

Quantitative evaluation of load effects of pile-net composite foundation based on systems analysis

More Information
  • Received Date: April 21, 2014
  • Published Date: December 25, 2014
  • In the current design of geosynthetic and pile supported (GSP) composite foundation, a pre-assumed soil arch height is always utilized in load sharing calculation, and the contribution of subsoil resistance is weakened in supporting the embankment fill. To improve the above two defects, the soil arching effect and the geomembrane effect are analyzed, and then the quantitative evaluation methods are presented. In the derivation, the pile-soil differential settlements at pile top and toe are considered, and the arch height can be calculated according to the relative pile-soil displacement. Simultaneously, the neutral point is adopted in skin friction analysis, and hence a formula for the load distribution is obtained based on the mobilized shearing stress developing from bottom to top. This method can take good care of the interaction between the embankment fill, pile-reinforced area and lower underlying layer, which can consider the penetration of pile tops, interaction between piles and surrounding soil and penetration of pile ends. According to the continuity condition of stress and displacement, a load effect solution of GSP composite foundation is obtained. The present method is validated to be reasonable by comparing the analytical solutions with the FEM results and the monitoring data, and can be adopted by engineers when it comes to the situation in presence of the bearing stratum at pile tip with certain stiffness.
  • [1]
    郑 刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J]. 土木工程学报, 2012, 45(2): 127-146. (ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese))
    [2]
    TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap door[C]// Proceeding of the First International Congress on Soil Mechanics and Foundation Engineering. Cambridge, 1936: 307-311.
    [3]
    MCNULTY J W. An experimental study of arching sand[R]. Vicksburg: Technical Report No. I-674, U.S. Army Engineer Waterways Experiment Station, Corp of Engineers, Mississippi, 1965.
    [4]
    EVANS C H. An examination of arching in granular soils[D]. Cambridge: Massachusetts Institute of Technology, 1984.
    [5]
    GUIDO V A, KNEUPPEL J D, SWEENY M A. Plate loading tests on geogrid-reinforced earth slabs[C]// Proceedings of the Geosynthetics’87. New Orleans, 1987: 216-225.
    [6]
    HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Engineering, 1988, 21(3): 12-18.
    [7]
    LOW B K, TANG S K, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938.
    [8]
    British Standard BS 8006. Code of practice for strengthened/reinforced soils and other fills[S]. London: British Standard Institution, 1995.
    [9]
    KEMPFERT H G, GOBEL C, ALEXIEW D, et al. German recommendations for reinforced embankments on pile-similar elements[S]. EuroGeo3-Third European Geosynthetics Conference, Geotechnical Engineering with Geosynthetics, 2004: 279-284.
    [10]
    陈云敏, 贾 宁, 陈仁朋. 桩承式路堤土拱效应分析[J]. 中国公路学报, 2004, 17(4): 1-6. (CHEN Yun-min, JIA Ning, CHEN Ren-peng. Soil arch analysis of pile-supported embankments[J]. China Journal of Highway and Transport, 2004, 17(4): 1-6. (in Chinese))
    [11]
    ABUSHARAR S W, ZHENG J J, CHEN B G, YIN J H. A simplified method for analysis of a piled embankment reinforced with geosynthetics[J]. Geotextiles and Geomembranes, 2009, 27(1): 39-52.
    [12]
    VILLARD P, GOURC J P, GIRAUD H. A geosynthetic reinforcement solution to prevent the formation of localized sinkholes[J]. Canadian Geotechnical Journal, 2000, 37(5): 987-999.
    [13]
    NAUGHTON P J. The significance of critical height in the design of piled embankments[C]// Proceeding of Geo-Denver 2007, New Peaks in Geotechnics, ASCE GSP 172. Denver, 2007.
    [14]
    王 非, 缪林昌. 落水洞上覆路堤土工加筋设计新方法[J]. 东南大学学报(自然科学版), 2009, 39(6): 1217-1221. (WANG Fei, MIAO Lin-chang. New design method of geosynthetic-reinforced embankment over sinkholes[J]. Journal of Southeast University(Natural Science Edition), 2009, 39(6): 1217-1221. (in Chinese))
    [15]
    刘吉福. 路堤下复合地基桩、土应力比分析[J]. 岩石力学与工程学报, 2003, 22(4): 674-677. (LIU Ji-fu. Analysis on pile-soil stress ratio for composite ground embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 674-677. (in Chinese))
    [16]
    折学森. 软土地基沉降计算[M]. 北京: 人民交通出版社, 1998. (ZHE Xue-sen. Settlement calculation of soft foundation[M]. Beijing: China Communications Press, 1998. (in Chinese))
    [17]
    董必昌, 郑俊杰. CFG 桩复合地基沉降计算方法研究[J]. 岩石力学与工程学报, 2002, 21(7): 1084-1086. (DONG Bi-chang, ZHENG Jun-jie. Study on the settlement calculation of CFG pile composite ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 1084-1086. (in Chinese))
    [18]
    施建勇, 邹 坚. 深层搅拌桩复合地基沉降计算理论研究[J]. 岩土力学, 2002, 23(3): 309-320. (SHI Jian-yong, ZOU Jian. Study on calculation theory of settlement of composite ground reinforced by deep-mixing pile group[J]. Rock and Soil Mechanics, 2002, 23(3): 309-320. (in Chinese))
    [19]
    雷金波. 带帽控沉疏桩复合地基试验研究及作用机理分析[D]. 南京: 河海大学, 2005. (LEI Jin-bo. Experiment study and working mechanism analysis of composite foundation with capped sparse piles to control settlement[D]. Nanjing: Hohai University, 2005. (in Chinese))
    [20]
    曹卫平, 陈云敏, 陈仁朋. 考虑路堤填筑过程与地基土固结相耦合的桩承式路堤土拱效应分析[J]. 岩石力学与工程学报, 2008, 27(8): 1610-1617. (CAO Wei-ping, CHEN Yun-min, CHEN Ren-peng. Analysis of soil arching in piled embankments considering coupled effect of embankment filling and soil consolidation[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1610-1617. (in Chinese))
    [21]
    赵明华, 何腊平, 张 玲. 基于荷载传递法的CFG桩复合地基沉降计算[J]. 岩土力学, 2010, 31(3): 839-844. (ZHAO Ming-hua, HE La-ping, ZHANG Ling. Settlement calculation of CFG pile composite foundation based on load transfer method[J]. Rock and Soil Mechanics, 2010, 31(3): 839-844. (in Chinese))
    [22]
    饶卫国, 赵成刚. 桩-网复合地基应力比分析与计算[J]. 土木工程学报, 2002, 35(2): 74-80. (RAO Wei-guo, ZHAO Cheng-gang. The behavior of pile-net composite foundation[J]. China Civil Engineering Journal, 2002, 35(2): 74-80. (in Chinese))
    [23]
    郑俊杰, 陈宝国, ABUSHARAR S W. 双向增强体复合地基桩土应力比分析[J]. 华中科技大学学报(自然科学版), 2007, 35(7): 110-113. (ZHENG Jun-jie, CHEN Bao-guo, ABUSHARAR S W. Pile-soil stress ratio of two directed reinforcement composite foundations[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition), 2007, 35(7): 110-113. (in Chinese))
    [24]
    张 军, 郑俊杰, 马 强. 路堤荷载下双向增强体复合地基受力机理分析[J]. 岩土工程学报, 2010, 32(9): 1392-1398. (ZHANG Jun, ZHEN Jun-jie, MA Qiang. Mechanical performance of biaxial reinforcement composite foundation under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1392-1398. (in Chinese))
    [25]
    陈昌富, 周志军. 双向增强体复合地基桩土应力比分析[J]. 岩土力学, 2009, 30(9): 2660-2666. (CHEN Chang-fu, ZHOU Zhi-jun. Analysis of pile-soil stress ratio for double reinforced composite ground[J]. Rock and Soil Mechanics, 2009, 30(9): 2660-2666. (in Chinese))
    [26]
    吕伟华, 缪林昌, 王 非. 基于不完全土拱效应的土工格栅加固机制与设计方法[J]. 岩石力学与工程学报, 2012, 31(3): 632-639. (LÜ Wei-hua, MIAO Ling-chang, WANG Fei. Mechanism of geosynthetic reinforcement based on partially developed soil arch effect and design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 632-639. (in Chinese))
    [27]
    RANDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical Engineering, 1978, 104(12): 1465-1488.
    [28]
    陈仁朋, 贾 宁, 陈云敏. 桩承式加筋路堤受力机理及沉降分析[J]. 岩石力学与工程学报, 2005, 24(23): 4358-4367. (CHEN Ren-peng, JIA Ning, CHEN Yun-min. Mechanism and settlement analysis of pile-supported and geogrid-reinforced embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4358-4367. (in Chinese))

Catalog

    Article views (227) PDF downloads (216) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return