• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
Research on the Failure Mode and the Compression Strength for the Frozen Clay at Different Temperature Gradients[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1856-1860.
Citation: Research on the Failure Mode and the Compression Strength for the Frozen Clay at Different Temperature Gradients[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1856-1860.

Research on the Failure Mode and the Compression Strength for the Frozen Clay at Different Temperature Gradients

More Information
  • Received Date: June 25, 2009
  • Revised Date: January 14, 2010
  • Published Date: December 14, 2010
  • The triaxial compression tests are performed on the frozen clay under three thermal gradients by use of the GFC (freezing with thermal gradient, istropically consolidation)method. The failure modes under different thermal gradients and the weakening effects of thermal gradients and the confining pressure on the strength are investigated. The results indicate that: (1) The thermal gradients have significant influences on the failure modes of the frozen soil. However, the effects of the confining pressure can be ignored compared with the thermal gradients. The failure modes under different thermal gradients present bottom bursting characteristics, but show middle bursting characteristics in the homogenous thermal field. The non-uniform distribution laws for the radial expanding amplitude and the vertical compression amplitude are the main forms of the “inhomogenous effects”, which are enhanced as the thermal gradients increase. (2) The failure volumetric strain change to expansion from shrinking gradually accords with the increase of the thermal gradients (or the thermal increase) under different confining pressures. (3) The strength decreases as the thermal gradients increase at the same confining pressure , and that increases firstly then decreases as the confining pressure increases under different thermal gradients, the reason for which can be attributed to the ice thawing and the fissure extension. (4) The compression strength under different thermal gradients can be described by the modified linear yielding criteria set up in the homogenous thermal field.
  • Related Articles

    [1]XIE Yi-fan, WU Ji-chun, WANG Yi, YE Yu, XIE Chun-hong, LU Chun-hui. Multiscale finite element-finite element model for simulating nodal Darcy velocity[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 107-114. DOI: 10.11779/CJGE202201010
    [2]FENG Xing, YAO Yang-ping, Li Ru-ning, WAN Zheng. Application of UH model considering temperature to finite element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 181-185. DOI: 10.11779/CJGE2015S2035
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]MA Xiao, QIAN Jian-gu, HAN Li-ming, CAO Jie, HUANG Mao-song. Equivalent finite element method for long-term settlement of subgrade induced by traffic load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 910-913.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]WANG Guo-cai, MA Da-jun, YANG Yang, ZHANG Jie. 3-D finite element analysis of ground settlement caused by shield construction of metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 266-270.
    [7]Finite element method for covered sheet pile wharfs[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4).
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, LI Chunguang, Lee C.F., GE Xiurun. Finite element method for solving the factor of safety[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 626-628.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return