• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DONG Quan-yang, CAI Yuan-qiang, XU Chang-jie, WANG Jun, SUN Hong-lei, GU Chuan. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element and resonant column tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2283-2289.
Citation: DONG Quan-yang, CAI Yuan-qiang, XU Chang-jie, WANG Jun, SUN Hong-lei, GU Chuan. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element and resonant column tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2283-2289.

Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element and resonant column tests

More Information
  • Received Date: May 08, 2013
  • Published Date: November 30, 2013
  • The bender element (BE) and resonant column (RC) tests on two clean sands with various densities and mean effective stresses under dry and saturated conditions are performed. Based on the test results, a reliable method for determining the travel time in BE tests is evaluated. Also, the deviation of the shear wave velocity between BE and RC tests is explained. The studies on the effect of different excitation signals on shear-wave velocity indicate that the shear-wave velocity by the Start-Start method shows a slight increasing trend with an increase in the excitation frequency. The shear-wave velocity determined by the Start-Start method under the excitation frequency of 10 kHz is consistent with that from the RC tests. The shear-wave velocity values from the BE tests are about 6%~10% greater than those of the RC tests. The differences can be explained by the dispersion of shear wave under saturated conditions. This study suggests that the dispersion of shear wave should be considered in saturated clean sand because the excitation frequency of BE tests is greater than the characteristic one. However, the dispersion of shear wave should not be considered in the saturated natural sand or silt for the reason that the excitation frequency of BE tests is lower than the characteristic one. The results of this study provide effective methods for the BE tests on clean and natural sands under saturated conditions.
  • [1]
    BURLAND J B, LONGWORTH T I, MOORE J F A. Study of ground and progressive failure caused by a deep excavation in Oxford clay[J]. G#x000e9;otechnique, 1977, 27(4): 557-591.
    [2]
    陈云敏, 周燕国, 黄 博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874- 880. (CHEN Yun-min, ZHOU Yan-guo, HUANG Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874-880. (in Chinese))
    [3]
    SHIRLEY D J, HAMPTON L D. Shear-wave measurements in laboratory sediments[J]. The Journal of the Acoustical Society of America, 1978, 63(2): 607-613.
    [4]
    柏立懂, 项 伟, SAVIDIS A Stavros, 等. 干砂最大剪切模量的共振柱与弯曲元试验[J]. 岩土工程学报, 2012, 34(1): 184-188. (BAI Li-dong, XIANG Wei, SAVIDIS A Stavros, et al. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188. (in Chinese))
    [5]
    LEE J S, SANTAMARINA J C. Bender elements:Performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063-1070.
    [6]
    LEONG E C, YEO S H, RAHARDJO H. Measuring shear wave velocity using bender elements[J]. Geotechnical Testing Journal, 2005, 28(5): 488-498.
    [7]
    谷 川, 蔡袁强, 王 军, 等. 循环应力历史对饱和软黏土小应变剪切模量的影响[J]. 岩土工程学报, 2012, 34(9): 1654-1660.(GU Chuan, CAI Yuan-qiang, WANG Jun, et al. Effects of loading history on small-strain shear modulus of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1654-1660. (in Chinese))
    [8]
    VIGGIANI G, ATKINSON J H. Interpretation of bender element tests[J]. G#x000e9;otechnique, 1995, 45(1): 149-154.
    [9]
    DYVIK R, MADSHUS C. Laboratory measurements of Gmax using bender elements[C]// Advances in the Art of Testing Soils under Cyclic Conditions. Detroit, 1985: 186-196.
    [10]
    SOUTO A, HARTIKAINEN J, OZUDOGRU K. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests[J]. G#x000e9;otechnique, 1994, 44(3): 519-526.
    [11]
    YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests[J]. Canadian Geotechnical Journal, 2008, 45(10): 1426-1438.
    [12]
    姬美秀, 陈云敏, 黄 博. 弯曲元试验高精度测试土样剪切波速方法[J]. 岩土工程学报, 2003, 25(6): 732-736. (JI Mei-xiu, CHEN Yun-min, HUANG Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 732-736. (in Chinese))
    [13]
    YANG Z X, LI X S, YANG J. Quantifying and modeling fabric anisotropy of granular soils[J]. G#x000e9;otechnique, 2008, 58(4): 237-248.
    [14]
    SL237#x02014;1999土工试验规程[S]. 1999. (SL237#x02014;1999 Specification of soil test[S]. 1999. (in Chinese))
    [15]
    BRIGNOLI E G M, GOTTI M, STOKOE K H II. Measurement of shear waves in laboratory specimens by means of piezo-electric transducers[J]. Geotechnical Testing Journal, 1996, 19(4): 384-397.
    [16]
    JOVICIC V, COOP M R, SIMIC M. Objective criteria for determining Gmax from bender element tests[J]. G#x000e9;otechnique, 1996, 46(2): 357-362.
    [17]
    ARULNATHAN R, BOULANGER R W, RIEMER M F. Analysis of bender element tests[J]. Geotechnical Testing Journal, 1998, 21(2): 120-131.
    [18]
    ZENG X, NI B. Stress-induced anisotropic Gmax of sands and its measurement[J]. Journal of Geotechnical and Geo-environmental Engineering, ASCE, 1999, 125(9): 741-749.
    [19]
    SANCHES-SALINERO I. Analytical investigation of seismic methods used for engineering application[D]. Austin: The University of Texas at Austin, 1987.
    [20]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid(I): Low frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
    [21]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid(II): Higher frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
    [22]
    STOLL R D. Experimental studies of attenuation in sediments[J]. Journal of the Acoustical Society of America, 1979, 66(4): 1152-1160.
    [23]
    SANTAMARINA J C, KLEIN K A, FAM M A. Soils and waves[M]. New York: John Wiley Sons Ltd, 2001: 238-282.
    [24]
    BERRYMAN J G. Elastic wave propagation in fluid-saturated porous media[J]. Journal of the Acoustical Society of America, 1981, 69(2): 416-424.
  • Related Articles

    [1]WANG Jun-jie, HUANG Shi-yuan, GUO Wan-li, ZHAO Tian-long. Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1622-1631. DOI: 10.11779/CJGE202009006
    [2]TU Bing-xiong, CAI Yan-yan, HE Jin-fang, YU Jin, XU Guo-ping, CHENG Qiang. Analysis of anchorage performance on new tension-compression anchor Ⅲ field test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 846-854. DOI: 10.11779/CJGE201905007
    [3]TU Bing-xiong, YU Jin, HE Jin-fang, CHENG Qiang, XU Guo-ping, JIA Jin-qin. Analysis of anchorage performance on new tension-compression anchorⅡ: model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 475-483. DOI: 10.11779/CJGE201903009
    [4]TU Bing-xiong, LIU Shi-yu, YU Jin, HE Jing-fang, ZHOU Jian-feng, JIA Jin-qing. Analysis of anchorage performance on new tension-compression anchor: Ⅰ simplified theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2289-2295. DOI: 10.11779/CJGE201812017
    [5]XU Ping. Elastoplastic analysis of gas drainage hole based on Tresca yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 16-20.
    [6]Combined tension-compression triaxial tests and extended Duncan-Chang model of compacted clay[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [7]DENG Chujian, HE Guojie, ZHENG Yingren. Studies on Drucker-Prager yield criterions based on M-C yield criterion and application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 735-739.
    [8]ZHANG Luyu, LIU Dongsheng, SHI Weimin. Application of the extended general Drucker-Prager yield criterion to slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 216-219.
    [9]XU Jun, LIU Dongsheng, ZHENG Yingren. Analysis of elastic-plastic stochastic finite element method based on probabilistic yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 225-228.
    [10]Shen Zhujiang. Summary on the Failure Griteria and Yield Functions[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 1-8.

Catalog

    Article views (316) PDF downloads (560) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return