• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Jun-jie, HUANG Shi-yuan, GUO Wan-li, ZHAO Tian-long. Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1622-1631. DOI: 10.11779/CJGE202009006
Citation: WANG Jun-jie, HUANG Shi-yuan, GUO Wan-li, ZHAO Tian-long. Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1622-1631. DOI: 10.11779/CJGE202009006

Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses

More Information
  • Received Date: November 25, 2019
  • Available Online: December 07, 2022
  • In order to explore the fracture mechanism of open cracks under compression-shear stress in rock-like materials, a relative passivation coefficient and a relative critical size are introduced, and a compression-shear-tension fracture criterion considering the geometric characteristics of cracks and T-stress is established. The effects of different factors on the distribution of tangential stresses and initiation angle of cracks are investigated. The predicted curves of the initiation angle of cracks are improved obviously because of considering the relative passivation coefficient, and the different fracture behaviors induced by crack length and material properties can also be explained after considering the T-stresses. In order to validate the theoretical solutions, the calculated results are compared with the test ones of several typical rock-like materials. It is found that when the relative passivation coefficient is small, the predicted values obtained by the proposed method agree well with those obtained from the tests, and the range of predicted angle is large. With the increase of the relative passivation coefficient, the error between the theoretical values and the test results increases gradually, and the range of predicted angle decreases slowly. The reason for this phenomenon is explained, the flaw of the fracture criterion based on the linear elastic fracture mechanics is discussed, and the applicable conditions of the proposed criterion is suggested.
  • [1]
    VÁSÁRHELYI B, BOBET A. Modeling of crack initiation, propagation and coalescence in uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2000, 33(2): 119-139. doi: 10.1007/s006030050038
    [2]
    ALIHA M R M, AYATOLLAHI M R, SMITH D J, et al. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading[J]. Engineering Fracture Mechanics, 2010, 77(11): 2200-2212. doi: 10.1016/j.engfracmech.2010.03.009
    [3]
    LIU H Y. Wing-crack initiation angle: A new maximum tangential stress criterion by considering T-stress[J]. Engineering Fracture Mechanics, 2018, 199: 380-391. doi: 10.1016/j.engfracmech.2018.06.010
    [4]
    TANG S B, BAO C Y, LIU H Y. Brittle fracture of rock under combined tensile and compressive loading conditions[J]. Canadian Geotechnical Journal, 2017, 54(1): 88-101. doi: 10.1139/cgj-2016-0214
    [5]
    刘红岩. 考虑T应力的岩石压剪裂纹起裂机理[J]. 岩土工程学报, 2019, 41(7): 1296-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907016.htm

    LIU Hong-yan. Initiation mechanism of rock shear crack considering T-stress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1296-1302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907016.htm
    [6]
    BOBET A. The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics, 2000, 66(2): 187-219. doi: 10.1016/S0013-7944(00)00009-6
    [7]
    WONG L, EINSTEIN H. Fracturing behavior of prismatic specimens containing single flaws[C]//Proceedings of the 41st US Rock Mechanics Symposium-ARMA's Golden Rocks 2006 - 50 Years of Rock Mechanics, 2006, Golden.
    [8]
    VESGA L, VALLEJO L, Lobo-Guerrero S. DEM analysis of the crack propagation in brittle clays under uniaxial compression tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32: 1405-1415. doi: 10.1002/nag.665
    [9]
    郭少华. 岩石类材料压缩断裂的实验与理论研究[D]. 长沙: 中南大学, 2003.

    GUO Shao-hua. Experimental and Theoretical Study on Compression Fracture of Rock Materials[D]. Changsha: Central South Universiyt, 2003. (in Chinese)
    [10]
    LIN H, YANG H T, WANG Y X, et al. Determination of the stress field and crack initiation angle of an open flaw tip under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2019, 104: 102358. doi: 10.1016/j.tafmec.2019.102358
    [11]
    SMITH D J, AYATOLLAHI M R, PAVIER M J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading[J]. Fatigue Fracture of Engineering Materials and Structures, 2001, 24(2): 137-150. doi: 10.1046/j.1460-2695.2001.00377.x
    [12]
    AYATOLLAHI M R, ALIHA M R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading[J]. Computational Materials Science, 2007, 38(4): 660-670. doi: 10.1016/j.commatsci.2006.04.008
    [13]
    AYATOLLAHI M R, MIRMOHAMMADI S A, SHIRAZI H A. The tension-shear fracture behavior of polymeric bone cement modified with hydroxyapatite nano-particles[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 50-59. doi: 10.1016/j.acme.2017.06.001
    [14]
    LIU H Y, LV S R. A model for the wing crack initiation and propagation of the inclined crack under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104121. doi: 10.1016/j.ijrmms.2019.104121
    [15]
    TANG S B. The effect of T-stress on the fracture of brittle rock under compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 86-98. doi: 10.1016/j.ijrmms.2015.06.009
    [16]
    WANG J J, HUANG S H, GUO W L, et al. Experimental study on fracture toughness of a compacted clay using semi-circular bend specimen[J]. Engineering Fracture Mechanics, 2020, 224: 106814. doi: 10.1016/j.engfracmech.2019.106814
    [17]
    李部, 黄润秋, 吴礼舟. 类岩石脆性材料非闭合裂纹的Ⅰ–Ⅱ压剪复合型断裂准则研究[J]. 岩土工程学报, 2017, 39(4): 662-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704013.htm

    LI Bu, HUANG Run-qiu, WU Li-zhou. Compression-shear fracture criteria for mixed modeⅠ–Ⅱ of open crack of rock-like brittle materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 662-668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704013.htm
    [18]
    赵彦琳, 范勇, 朱哲明, 等. T应力对闭合裂纹断裂行为的理论和实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1340-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806003.htm

    ZHAO Yan-lin, FAN Yong, ZHU Zhe-ming, et al. Theoretical and experimental study on the fracture behavior of closed crack under t-stress[J]. Journal of Rock Mechanics and Engineering, 2018, 37(6): 1340-1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806003.htm
    [19]
    WANG J J. Hydraulic Fracturing in Earth-Rock Fill Dams[M]. Singapore: John Wiley & Sons Singapore Pte Ltd., 2014.
    [20]
    RAO Q H, SUN Z Q, STEPHANSSON O, et al. Shear fracture (Mode II) of brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 355-375. doi: 10.1016/S1365-1609(03)00003-0
    [21]
    蒲成志, 杨仕教, 张春阳. 张开度影响的裂隙体破断机制探讨[J]. 岩土工程学报, 2019, 41(10): 1836-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910009.htm

    PU Cheng-zhi, YANG Shi-jiao, ZHANG Chun-yang. Fracture mechanism of fracture body affected by opening degree[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1836-1844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910009.htm
    [22]
    李银平, 杨春和. 裂纹几何特征对压剪复合断裂的影响分析[J]. 岩石力学与工程学报, 2006, 25(3): 462-466. doi: 10.3321/j.issn:1000-6915.2006.03.004

    LI Yin-ping, YANG Chun-he. Analysis of the influence of crack geometry on compression shear composite fracture[J]. Journal of Rock Mechanics and Engineering, 2006, 25(3): 462-466. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.004
    [23]
    李强. 压缩作用下岩体裂纹起裂扩展规律及失稳特性的研究[D]. 大连: 大连理工大学, 2008.

    LI Qiang. Study on Crack Initiation and Propagation Law and Instability Characteristics of Rock Mass under Compression[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
    [24]
    MUSKHELISHVILI N. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Leyden: Noordhoff, 1953.
    [25]
    陈篪. 论裂纹扩展的判据[J]. 金属学报, 1977, 13(1/2): 57-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB1977Z1004.htm

    CHEN Chi. On the criterion for crack extension[J]. Acta Metallurgica Sinica, 1977, 13(1/2): 57-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB1977Z1004.htm
    [26]
    WANG Y X, ZHANG H, LIN H, et al. Fracture behaviour of central-flawed rock plate under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102503. doi: 10.1016/j.tafmec.2020.102503
    [27]
    ZHANG X P, WONG L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 711-737.
    [28]
    ZHUANG X Y, CHUN J W, ZHU H H. A comparative study on unfilled and filled crack propagation for rock-like brittle material[J]. Theoretical and Applied Fracture Mechanics, 2014, 72: 110-120.
    [29]
    LI X F, LEE K Y, TANG G J. Kink angle and fracture load for an angled crack subjected to far-field compressive loading[J]. Engineering Fracture Mechanics, 2012, 82: 172-184.
    [30]
    MIAO S T, PAN P Z, WU Z G, et al. Fracture analysis of sandstone with a single filled flaw under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 204: 319-343.
  • Cited by

    Periodical cited type(8)

    1. 王磊,刘化强,李少波,张宇,刘怀谦,陈礼鹏,王安铖. 煤体张开型裂隙演化规律及失稳前兆试验. 中国矿业大学学报. 2024(02): 250-263 .
    2. 王磊,刘化强,陈礼鹏,刘怀谦,李少波,朱传奇,范浩. 煤张开型裂隙三维宏细观演化特征及扰动因素探究. 煤炭科学技术. 2024(05): 71-83 .
    3. 周雷强,司马珂冰,李昊,李佳. 矿用多功能类砂岩质高强度透水混凝土试配试验. 现代矿业. 2024(05): 109-114 .
    4. 李修磊,刁航,陈臣,黄锋,凌天清,曾彬. 压缩荷载作用下岩石类材料裂缝扩展预测理论的改进及验证. 河南理工大学学报(自然科学版). 2024(05): 163-172 .
    5. 高丙丽,曹孝杰. 地震作用下岩石裂纹扩展角度研究. 西安科技大学学报. 2023(05): 980-987 .
    6. 刘建,乔兰,李庆文,赵国彦. 考虑T应力的Ⅰ/Ⅱ型裂纹最大切向应变能密度断裂准则及其验证. 中南大学学报(自然科学版). 2022(06): 2268-2278 .
    7. 竹宇波. 基于黏聚力单元法的单双射孔水力裂缝扩展数值模拟研究. 有色金属工程. 2021(01): 107-115 .
    8. 华文,潘鑫,淦志强,董世明. 基于广义最大周向应变准则的断裂特性研究. 西南石油大学学报(自然科学版). 2021(06): 42-53 .

    Other cited types(13)

Catalog

    Article views (362) PDF downloads (193) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return