Citation: | WANG Jun-jie, HUANG Shi-yuan, GUO Wan-li, ZHAO Tian-long. Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1622-1631. DOI: 10.11779/CJGE202009006 |
[1] |
VÁSÁRHELYI B, BOBET A. Modeling of crack initiation, propagation and coalescence in uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2000, 33(2): 119-139. doi: 10.1007/s006030050038
|
[2] |
ALIHA M R M, AYATOLLAHI M R, SMITH D J, et al. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading[J]. Engineering Fracture Mechanics, 2010, 77(11): 2200-2212. doi: 10.1016/j.engfracmech.2010.03.009
|
[3] |
LIU H Y. Wing-crack initiation angle: A new maximum tangential stress criterion by considering T-stress[J]. Engineering Fracture Mechanics, 2018, 199: 380-391. doi: 10.1016/j.engfracmech.2018.06.010
|
[4] |
TANG S B, BAO C Y, LIU H Y. Brittle fracture of rock under combined tensile and compressive loading conditions[J]. Canadian Geotechnical Journal, 2017, 54(1): 88-101. doi: 10.1139/cgj-2016-0214
|
[5] |
刘红岩. 考虑T应力的岩石压剪裂纹起裂机理[J]. 岩土工程学报, 2019, 41(7): 1296-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907016.htm
LIU Hong-yan. Initiation mechanism of rock shear crack considering T-stress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1296-1302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907016.htm
|
[6] |
BOBET A. The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics, 2000, 66(2): 187-219. doi: 10.1016/S0013-7944(00)00009-6
|
[7] |
WONG L, EINSTEIN H. Fracturing behavior of prismatic specimens containing single flaws[C]//Proceedings of the 41st US Rock Mechanics Symposium-ARMA's Golden Rocks 2006 - 50 Years of Rock Mechanics, 2006, Golden.
|
[8] |
VESGA L, VALLEJO L, Lobo-Guerrero S. DEM analysis of the crack propagation in brittle clays under uniaxial compression tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32: 1405-1415. doi: 10.1002/nag.665
|
[9] |
郭少华. 岩石类材料压缩断裂的实验与理论研究[D]. 长沙: 中南大学, 2003.
GUO Shao-hua. Experimental and Theoretical Study on Compression Fracture of Rock Materials[D]. Changsha: Central South Universiyt, 2003. (in Chinese)
|
[10] |
LIN H, YANG H T, WANG Y X, et al. Determination of the stress field and crack initiation angle of an open flaw tip under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2019, 104: 102358. doi: 10.1016/j.tafmec.2019.102358
|
[11] |
SMITH D J, AYATOLLAHI M R, PAVIER M J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading[J]. Fatigue Fracture of Engineering Materials and Structures, 2001, 24(2): 137-150. doi: 10.1046/j.1460-2695.2001.00377.x
|
[12] |
AYATOLLAHI M R, ALIHA M R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading[J]. Computational Materials Science, 2007, 38(4): 660-670. doi: 10.1016/j.commatsci.2006.04.008
|
[13] |
AYATOLLAHI M R, MIRMOHAMMADI S A, SHIRAZI H A. The tension-shear fracture behavior of polymeric bone cement modified with hydroxyapatite nano-particles[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 50-59. doi: 10.1016/j.acme.2017.06.001
|
[14] |
LIU H Y, LV S R. A model for the wing crack initiation and propagation of the inclined crack under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104121. doi: 10.1016/j.ijrmms.2019.104121
|
[15] |
TANG S B. The effect of T-stress on the fracture of brittle rock under compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 86-98. doi: 10.1016/j.ijrmms.2015.06.009
|
[16] |
WANG J J, HUANG S H, GUO W L, et al. Experimental study on fracture toughness of a compacted clay using semi-circular bend specimen[J]. Engineering Fracture Mechanics, 2020, 224: 106814. doi: 10.1016/j.engfracmech.2019.106814
|
[17] |
李部, 黄润秋, 吴礼舟. 类岩石脆性材料非闭合裂纹的Ⅰ–Ⅱ压剪复合型断裂准则研究[J]. 岩土工程学报, 2017, 39(4): 662-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704013.htm
LI Bu, HUANG Run-qiu, WU Li-zhou. Compression-shear fracture criteria for mixed modeⅠ–Ⅱ of open crack of rock-like brittle materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 662-668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704013.htm
|
[18] |
赵彦琳, 范勇, 朱哲明, 等. T应力对闭合裂纹断裂行为的理论和实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1340-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806003.htm
ZHAO Yan-lin, FAN Yong, ZHU Zhe-ming, et al. Theoretical and experimental study on the fracture behavior of closed crack under t-stress[J]. Journal of Rock Mechanics and Engineering, 2018, 37(6): 1340-1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806003.htm
|
[19] |
WANG J J. Hydraulic Fracturing in Earth-Rock Fill Dams[M]. Singapore: John Wiley & Sons Singapore Pte Ltd., 2014.
|
[20] |
RAO Q H, SUN Z Q, STEPHANSSON O, et al. Shear fracture (Mode II) of brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 355-375. doi: 10.1016/S1365-1609(03)00003-0
|
[21] |
蒲成志, 杨仕教, 张春阳. 张开度影响的裂隙体破断机制探讨[J]. 岩土工程学报, 2019, 41(10): 1836-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910009.htm
PU Cheng-zhi, YANG Shi-jiao, ZHANG Chun-yang. Fracture mechanism of fracture body affected by opening degree[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1836-1844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910009.htm
|
[22] |
李银平, 杨春和. 裂纹几何特征对压剪复合断裂的影响分析[J]. 岩石力学与工程学报, 2006, 25(3): 462-466. doi: 10.3321/j.issn:1000-6915.2006.03.004
LI Yin-ping, YANG Chun-he. Analysis of the influence of crack geometry on compression shear composite fracture[J]. Journal of Rock Mechanics and Engineering, 2006, 25(3): 462-466. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.004
|
[23] |
李强. 压缩作用下岩体裂纹起裂扩展规律及失稳特性的研究[D]. 大连: 大连理工大学, 2008.
LI Qiang. Study on Crack Initiation and Propagation Law and Instability Characteristics of Rock Mass under Compression[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
|
[24] |
MUSKHELISHVILI N. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Leyden: Noordhoff, 1953.
|
[25] |
陈篪. 论裂纹扩展的判据[J]. 金属学报, 1977, 13(1/2): 57-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB1977Z1004.htm
CHEN Chi. On the criterion for crack extension[J]. Acta Metallurgica Sinica, 1977, 13(1/2): 57-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB1977Z1004.htm
|
[26] |
WANG Y X, ZHANG H, LIN H, et al. Fracture behaviour of central-flawed rock plate under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102503. doi: 10.1016/j.tafmec.2020.102503
|
[27] |
ZHANG X P, WONG L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 711-737.
|
[28] |
ZHUANG X Y, CHUN J W, ZHU H H. A comparative study on unfilled and filled crack propagation for rock-like brittle material[J]. Theoretical and Applied Fracture Mechanics, 2014, 72: 110-120.
|
[29] |
LI X F, LEE K Y, TANG G J. Kink angle and fracture load for an angled crack subjected to far-field compressive loading[J]. Engineering Fracture Mechanics, 2012, 82: 172-184.
|
[30] |
MIAO S T, PAN P Z, WU Z G, et al. Fracture analysis of sandstone with a single filled flaw under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 204: 319-343.
|