• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIAN Wen-bin, ZHANG Deng, HUANG Chun-xiang. Micromechanism of cement-sodium silicate-stabilized soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 632-637.
Citation: JIAN Wen-bin, ZHANG Deng, HUANG Chun-xiang. Micromechanism of cement-sodium silicate-stabilized soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 632-637.

Micromechanism of cement-sodium silicate-stabilized soft soils

More Information
  • Received Date: July 16, 2013
  • Published Date: November 24, 2013
  • The SEM technique is used to observe and study the microstructure of cement-sodium silicate-stabilized soft soils with different curing time. The GIS technique is employed to realize 3D visualization of the image of SEM and to calculate the porosity of the soils before and after stabilization. The results show that the principal components of cement-sodium silicate hydration products are respectively ettringite in early days and hydrated calcium silicate in later days. The shapes of the hydrated products are mainly fibrous and prismatical. They play a role of reinforcement by attaching each other to form network and enwrapping the soil particles to form greater particles. The micromechanism of cement-sodium silicate-stabilized soft soils is analyzed from both chemical and physical points of view. From the chemical point of view it mainly includes hydrolysis and hydration reaction of cement, rapid hardening and reinforcement of sodium silicate and the effect between clay particles and cement, while from the physical point of view, it includes filling effect, cementation effect, reinforcement effect and skeleton effect. It is of important significance for the design and construction of foundation treatment in soft soil areas.
  • [1]
    徐志钧, 曹名葆. 水泥土搅拌法处理地基[M]. 北京: 机械工业出版社, 2004. (XU Zhi-jun, CAO Ming-bao. Foundation treatment using mixed-in-place pile[M]. Beijing: China Machine Press, 2004. (in Chinese))
    [2]
    陈慧娥, 王 清. 水泥加固不同地区软土的试验研究[J]. 岩土力学, 2007, 28(2): 423-426. (CHEN Hui-e, WANG Qing. Laboratory study on consolidation effect of different area soft soils stabilized with cement[J]. Rock and Soil Mechanics, 2007, 28(2): 423-426. (in Chinese))
    [3]
    樊恒辉, 吴普特, 高建恩. 水泥基土壤固化剂固化土的微观结构特征[J]. 建筑材料学报, 2010, 13(5): 669-674. (FAN Heng-hui, WU Pu-te, GAO Jian-en, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials, 2010, 13(5): 669-674. (in Chinese))
    [4]
    赵理政, 姜洪涛, 唐朝生, 等. 超微粒子水泥加固软土试验研究[J]. 岩土力学, 2010, 31(1): 118-122. (ZHAO Li-zheng, JIANG Hong-tao, TANG Chao-sheng, et al. Experimental research of soft soil reinforcement using ALOFIX-MC[J]. Rock and Soil Mechanics, 2010, 31(1): 118-122. (in Chinese))
    [5]
    杨爱武, 杜东菊, 赵瑞斌. 水泥及其外加剂固化天津海积软土的试验研究[J]. 岩土力学, 2007, 28(9): 1823-1827. (YANG Ai-wu, DU Dong-ju, ZHAO Rui-bin. Experimental study on cement and its additional agent to cure Tianjin marine soft soil[J]. Rock and Soil Mechanics, 2007, 28(9): 1823-1827. (in Chinese))
    [6]
    CHEN Li, LIN Deng-fong. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement[J]. Journal of Hazardous Materials, 2009, 162: 321-327.
    [7]
    王 兵, 杨为民, 李占强. 击实水泥土强度随养护龄期增长的微观机理[J]. 北京科技大学学报, 2008, 30(3): 233-238. (WANG Bing, YANG Wei-min, LI Zhan-qiang. Micromechanism of strength increase with curing time for compacted cement-soil[J]. Journal of University of Science and Technology Beijing, 2008, 30(3): 233-238. (in Chinese))
    [8]
    李俊才, 赵泽三, 高国瑞. 水泥土的微结构特征及分析[J]. 成都理工学院学报, 2000, 27(4): 388-393. (LI Jun-cai, ZHAO Ze-san, GAO Guo-rui. Analysis and microstructure characters of cement-soil[J]. Journal of Chengdu University of Technology, 2000, 27(4): 388-393. (in Chinese))
    [9]
    李 振, 王 清, 范建华, 等. 固化软土微观结构效应[J]. 吉林大学学报(地球科学版), 2004, 34(4): 587-591. (LI Zhen, WANG Qing, FAN Jian-hua, et al. Microstructure effect of consolidated soft soils[J]. Journal of Jilin University (Earth Science Edition), 2004, 34(4): 587-591. (in Chinese))
    [10]
    王 清, 王凤艳, 肖树芳. 土微观结构特征的定量研究及其在工程中的应用[J]. 成都理工学院学报, 2001, 28(2): 148-153. (WANG Qing, WANG Feng-yan, XIAO Shu-fang. A quantitative study of the microstructure characteristics of soil and its application to the engineering[J]. Journal of Chengdu University of Technology, 2001, 28(2): 148-153. (in Chinese))
    [11]
    RAHMAN Md Mokhlesur, SIDDIQUE Abu, UDDIN Md Kamal. Microstructure and chemical properties of cement treated soft Bangladesh clays[J]. Soil and Foundations, 2010, 50(1): 1-7.
    [12]
    HORPIBULSUK Suksun, RACHAN Runglawan, RAKSACHON Yuttana. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soil and Foundations, 2009, 49(1): 85-98.
    [13]
    张先伟, 孔令伟, 郭爱国, 等. 基于SEM 和MIP 试验结构性黏土压缩过程中微观孔隙的变化规律[J]. 岩石力学与工程学报, 2012, 31(2): 406-412. (ZHANG Xian-wei, KONG Ling-wei, GUO Ai-guo, et al. Evolution of microscopic pore of structured clay in compression process based on SEM and MIP test[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 406-412. (in Chinese))
    [14]
    王宝军, 施 斌, 蔡 奕, 等. 基于GIS的黏性土SEM图像三维可视化与孔隙度计算[J]. 岩土力学, 2008, 29(1): 251-255. (WANG Bao-jun, SHI Bin, CAI Yi, et al. 3D visualization and porosity computation of clay soil SEM image by GIS[J]. Rock and Soil Mechanics, 2008, 29(1): 251-255. (in Chinese))
  • Related Articles

    [1]WANG Jun-jie, HUANG Shi-yuan, GUO Wan-li, ZHAO Tian-long. Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1622-1631. DOI: 10.11779/CJGE202009006
    [2]TU Bing-xiong, CAI Yan-yan, HE Jin-fang, YU Jin, XU Guo-ping, CHENG Qiang. Analysis of anchorage performance on new tension-compression anchor Ⅲ field test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 846-854. DOI: 10.11779/CJGE201905007
    [3]TU Bing-xiong, YU Jin, HE Jin-fang, CHENG Qiang, XU Guo-ping, JIA Jin-qin. Analysis of anchorage performance on new tension-compression anchorⅡ: model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 475-483. DOI: 10.11779/CJGE201903009
    [4]TU Bing-xiong, LIU Shi-yu, YU Jin, HE Jing-fang, ZHOU Jian-feng, JIA Jin-qing. Analysis of anchorage performance on new tension-compression anchor: Ⅰ simplified theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2289-2295. DOI: 10.11779/CJGE201812017
    [5]XU Ping. Elastoplastic analysis of gas drainage hole based on Tresca yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 16-20.
    [6]Combined tension-compression triaxial tests and extended Duncan-Chang model of compacted clay[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [7]DENG Chujian, HE Guojie, ZHENG Yingren. Studies on Drucker-Prager yield criterions based on M-C yield criterion and application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 735-739.
    [8]ZHANG Luyu, LIU Dongsheng, SHI Weimin. Application of the extended general Drucker-Prager yield criterion to slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 216-219.
    [9]XU Jun, LIU Dongsheng, ZHENG Yingren. Analysis of elastic-plastic stochastic finite element method based on probabilistic yield criterion[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 225-228.
    [10]Shen Zhujiang. Summary on the Failure Griteria and Yield Functions[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 1-8.

Catalog

    Article views (359) PDF downloads (759) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return