| Citation: | GU Chuan, CAI Yuan-qiang, WANG Jun, YANG Fang, HU Xiu-qing. Effects of loading history on small-strain shear modulus of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1654-1660. |
| [1] |
HARDIN B O, RICHART Jr F E. Elastic wave velocities in granular soils[J]. Journal of Soil Mechanics and Foundations Division, ASCE 1963, 89(1): 33–65.
|
| [2] |
HARDIN B O, BLACK W L. Vibration modulus of normally consolidated clay[J]. Journal of Soil Mechanics and Foundations Division, ASCE 1968, 94(2): 453–69.
|
| [3] |
TOKIMATSU K, YAMAZAKI T, YOSHIMI Y. Soil liquefaction evaluation by elastic shear moduli[J]. Soils and Foundations, 1986, 26(1): 25–35.
|
| [4] |
ZHOU Yan-guo, CHEN Yun-min. Influence of seismic cyclic 1oading history on small strain shear modulus of saturated sands[J]. Soil Dynamics and Earthquake Engineering, 2005, 25: 341–353.
|
| [5] |
FINN W D L, BYRNE P M, MARTIN G R. Seismic response and liquefaction of sands[J]. Journal of Geotechnical Engineering Division, ASCE 1976, 102(8): 841–56.
|
| [6] |
FINN W D L, LEE K W, MARTIN G R. An effective stress model for liquefaction[J]. Journal of Geotechnical Engineering Division, ASCE 1977, 103(6): 517–33.
|
| [7] |
DRNEVICH V P, HALL J R, RICHART F E J R. Effects of amplitude of vibration of the shear modulus of sand[C]// Proceeding of International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, NM, 1976.
|
| [8] |
WICHTMANN T, TRIANTAFYLLIDIS Th. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, Part l: cyclic and dynamic torsional prestraining[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(2), 127–147.
|
| [9] |
周燕国. 土结构性的剪切波速表征及对动力特性的影响[D]. 杭州: 浙江大学, 2007. (ZHOU Yan-guo. Shear wave velocity-based characterization of soil structure and its effects on dynamic behavior[D]. Hangzhou: Zhejiang University, 2007. (in Chinese))
|
| [10] |
张 钧. 循环应力历史对粉土小应变剪切模量的影响[D]. 杭州: 浙江大学, 2010. (ZHANG Jun. Cyclic stress history effects on small-strain shear modulus of silt[D]. Hangzhou: Zhejiang University, 2010. (in Chinese))
|
| [11] |
姬美秀. 压电陶瓷弯曲元剪切波速测试及饱和海洋软黏土动力特性研究[D]. 杭州: 浙江大学, 2005. (JI Mei-xiu. Study on the shear wave velocity measurement from bender element and dynamic properties of saturated soft marine clay[D]. Hangzhou: Zhejiang University, 2005. (in Chinese))
|
| [12] |
SHIRLEY D, HAMPTON L D. Shear-wave measurements in laboratory sediments[J]. Journal of the Acoustical Society of America, 1978, 63(2): 607–613.
|
| [13] |
DYVIK R, MADSHUS C. Laboratory measurement of Gmax using bender elements[C]// Proceedings of ASCE Annual Convention: Advances in the Art of Testing Soils Under Cyclic Conditions. Detroit: ASCE, 1985: 186–196.
|
| [14] |
姬美秀, 陈云敏, 黄 博. 弯曲元试验高精度测试土样剪切波速方法[J]. 岩土工程学报, 2003, 26(6): 732–736. (JI Mei-xiu, CHEN Yun-min, HUANG Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Jounal of Geotechnical Engineering, 2003, 26(6): 732–736. (in Chinese))
|
| [15] |
周燕国, 陈云敏, 柯 瀚. 砂土液化势剪切波速简化判别法的改进[J]. 岩石力学与工程学报, 2005, 24(13): 2369–2375. (ZHOU Yan-guo, CHEN Yun-min, KE Han. Improvement of simplified procedure for liquefaction potential evaluation of sands by shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2369–2375. (in Chinese))
|
| [16] |
陈云敏, 周燕国, 黄 博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874–880. (CHEN Yun-min, ZHOU Yan-guo, HUANG Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Jounal of Geotechnical Engineering, 2006, 28(7): 874–880. (in Chinese))
|
| [17] |
KGAAWA T. Moduli and damping factors of soft marine clays[J]. Journal of Geotechnical Engineering, ASCE 1992, 118(9): 1360–1375.
|
| [18] |
HARDIN B O, DMEVIEH V P. Shear modulus and damping in soils: Measurement and parameter effects[J]. Journal of Soil Mechanics and Foundations Division, ASCE 1972, 98(6): 603–624.
|
| [1] | WANG Rui, ZHOU Hong-wei, ZHUO Zhuang, XUE Dong-jie, YANG Shuai. Finite difference method for space-fractional seepage process in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1759-1764. DOI: 10.11779/CJGE202009021 |
| [2] | LIU Hua-xuan, LIU Dong-jia, LU Zhi-tang, TAO Jun, JIANG Jing. Numerical calculation of three-dimensional elastic wave equation of piles staggered grid finite difference using method with variable step lengths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1754-1760. DOI: 10.11779/CJGE201409024 |
| [3] | YAN Shu-wang, JIA Zhao-lin, GUO Bing-chuan, SUN Li-qiang. Consolidation characteristics of fillings by variable coefficients finite difference method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 496-500. |
| [4] | LIANG Fa-yun, LI Yan-chu, HUANG Mao-song. Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 300-304. |
| [5] | ZHANG Ming, ZHAO You-ming, LIU Guo-nan, HU Rong-hua. Finite difference solution to equation for large-strain consolidation of double-layered vertical drain ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1666-1674. |
| [6] | SU Dong. Elasto-plastic p-y model and incremental finite element method for beams on nonlinear foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1469-1474. |
| [7] | JIANG Jie, GU Qian-yan, HUANG Mao-song. Nonlinear analysis for settlement of vertically loaded single pile in dock pits after excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 212-216. |
| [8] | ZHANG Hua, LU Yang. Numerical method for retaining structures based on coupled finite difference method and discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1402-1407. |
| [9] | WU Feng, SHI Beiling, ZHUO Yang. Nonlinear m method for piles under lateral load[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1398-1401. |
| [10] | ZHANG Jifa, XIE Xinyu, ZENG Guoxi. An analytical approach to one-dimensional finite strain non-linear consolidation by Lie group transformation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 639-642. |