• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Kai, CHEN Wen-wu, HAN Lin, WANG Xu-dong, HAN Wen-feng. Effects of salinized deterioration and aeolian ullage on soils in undercutting area of earthern ruins in arid region[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1412-1418.
Citation: CUI Kai, CHEN Wen-wu, HAN Lin, WANG Xu-dong, HAN Wen-feng. Effects of salinized deterioration and aeolian ullage on soils in undercutting area of earthern ruins in arid region[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1412-1418.

Effects of salinized deterioration and aeolian ullage on soils in undercutting area of earthern ruins in arid region

More Information
  • Published Date: September 14, 2011
  • The formation and development of undercutting area is one of the typical diseases controlled by climatic factors and will commonly and directly do harm to earthern ruins in arid region. Based on the results of feature description and salinity monitoring of undercutting area in some typical relics in Turpan Gaochang ancient ruins, Guazhou Suoyang ruins, Yinchuan Xixia King tomb and Xining Ming Great Wall, it is found that aeolian bond exists in the bottom undercutting area of earthern ruins. Based on the results of wind tunnel and elastic wave velocity experiments in laboratory on remodeling samples mixed with different salt contents and undergoing three dry-moisture cycles after desalination, it is revealed that salinized deterioration and aeolian ullage are two important effects in the process of the diseases. In-depth analysis and interpretation of mechanism of disease are performed so as to discover influences of salt type, salt content and wind velocity on the two effects. Through engineering geology and mechanical theory analysis, three categories of deformation and failure mechanism of evolution due to ruin’s undercutting are summarized. It may be useful for controlling and monitoring the disease and its impact on stability of ruins.
  • [1]
    萧 默 . 敦煌建筑研究 [M]. 北京 : 文物出版社 , 1989. ( XIAO Mu. Research on construction of Dunhuang [M]. Beijing: Wenwu Publishing House, 1989. (in Chinese))
    [2]
    黄克忠 . 岩土 文物 建筑 的保护 [M]. 北京 : 中国 建筑工业出版社 , 1998. ( HUANG Ke-zhong. Conservation of cultural relic and construction building of rock-soil [M]. Beijing: China Architecture & Building Press, 1998. (in Chinese))
    [3]
    李最雄 . 丝绸之路古遗址保护 [M]. 北京 : 科学出版社 , 1994. (LI Zui-xiong. Conservation of ancient sites on the Slik Road[M]. Beijing: China Sicence Press, 2004. (in Chinese))
    [4]
    崔 凯 , 谌文武 , 韩文峰 , 等 . 多元层状陡立土质边坡差异性风蚀效应研究 [J]. 岩土工程学报 , 2009, 31 (9): 1414 – 1421. (CUI Kai, CHEN Wen-wu, HAN Wen-fen, et al. Study on effects of differences wind erosion for multivariate layered steep soil slope [J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (9): 1414 – 1421. (in Chinese) )
    [5]
    LEWIN S Z. The mechanism of masonry decay through crystallization[J]. Conservation of Historic Stones Buildings and Monuments, 1982(1): 120 – 144.
    [6]
    王旭东 . 中国西北干旱环境下石窟和土遗址保护加固研究 [D]. 兰州 : 兰州大学 , 2003. (WANG Xu-dong. The conservation and consolidation of the grottoes and the earthen architecture site in the arid region of Northwest China[D]. Lanzhou: Lanzhou University, 2003. (in Chinese))
    [7]
    张虎元 , 刘 平 , 王锦芳 , 等 . 土建筑遗址表面结皮形成与剥离机制研究 [J]. 岩土力学 , 2009, 30 (7): 1883 – 1891. (ZHANG Hu-yuan, LIU Ping, WANG Jin-fang, et al. Generation and detachment of surface crust on ancient earthen architectures[J]. Rock and Soil Mechanics, 2009, 30 (7): 1883 – 1891. (in Chinese))
    [8]
    李最雄 , 赵林毅 , 孙满利 . 中国丝绸之路土遗址的病害及 PS 加固 [J]. 岩石力学与工程学报 , 2009, 28 (5): 1047 – 1053 . (LI Zui-xiong, ZHAO Lin-yi, SUN Man-li. Deterioation of earthern sites and conslidation with PS material along Silk Road of China[J]. Chinese Journal of Rock Mechanics and Engineering , 2009, 28 (5): 1047 – 1053. (in Chinese) )
    [9]
    赵海英 , 李最雄 , 韩文峰 , 等 . 西北干旱区土遗址的主要病害及成因 [J] . 岩石力学与工程学报 , 2003, 22 ( 增刊 2): 2875 – 2880. (ZHAO Hai-ying, LI Zui-xiong, HAN Wen-feng, et al. Main diseases and their causes of earthen ruins in region of Northwest China[J].Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2875 – 2880. (in Chinese))
    [10]
    GB50021 — 2001 岩土工程勘察规范 [S]. 2002. (GB50021 — 2001 The code for prospecting the geological engineering[S]. 2002. (in Chinese))
    [11]
    闫治国 , 朱合华 , 邓 涛 , 等 . 三种岩石高温后纵波波速特性的试验研究 [J]. 岩土工程学报 , 2006, 28 (11): 2010 – 2014. (YAN Zhi-guo, ZHU He-hua, DENG Tao, et al. Experimental study on longitudinal wave characteristics of tuff granite and breccia after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (11): 2010 – 2014. (in Chinese))
    [12]
    刘玉璋 , 董光荣 , 李长治 . 影响土壤风蚀主要因素的风洞实验研究 [J]. 中国沙漠 , 1992, 12 (4): 41 – 49. (LIU Yu-zhang, DONG Guang-rong, LI Chang-zhi. Study on some factors influencing soil erosion. by wind tunnel experiment[J]. Journal of Desert Research , 1992, 12 (4): 41 – 49. (in Chinese))
    [13]
    DANIEL E B, TED M Z, SERGIO A. Abascal. Wind erosion quantity and quality of an entic haplustoll of the semi-arid pampas of argentina[J]. Journal of Arid Environments, 2007, 69 : 29 – 39.
    [14]
    崔 凯 , 谌文武 , 张景科 , 等 . 多元层状边坡土体风蚀速率与微结构参数关系 [J]. 岩土力学 , 2006, 30 (9): 2741 – 2746. ( CUI Kai, CHEN Wen-wu, ZHANG Jin-ke, et al. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. Rock and Soil Mechanics, 2009, 30 (9): 2741 – 2746. (in Chinese))
    [15]
    移小勇 , 赵哈林 , 张铜会 , 等 . 挟沙风对土壤风蚀的影响研究 [J]. 水土保持学报 , 2005, 19 (3): 58 – 61. (YI Xiao-yong, ZHAO Ha-lin, ZHANG Tong-hui, et al. Influence of wind-sand flow on soil erosion[J]. Journal of Soil Water Conservation , 2005, 19 (3): 58 – 61. (in Chinese)).
    [16]
    CHEPIL W S. Properties of soil which influence wind erosion[J]. Soil Science, 1951: 69 – 70.
    [17]
    马月存 , 陈源泉 , 隋 鹏 , 等 . 土壤风蚀影响因子与防治技术 [J]. 生态学杂志 , 2006, 25 (11): 1390 – 1394. (MA Yue-cun, CHEN Yuan-quan, SUI Peng, et al. Research advances in affecting factors and prevention techniques of soil wind erosion[J]. Chinese Journal of Ecology , 2006, 25 (11): 1390 – 1394. (in Chinese))
    [18]
    HINRICH L B, BRIAN L M, GEORGE A O'Connor. Soil chemistry[M]. 3rd edition. New York: John Wiley & Sons, 2001.
    [19]
    张倬元 , 王士天 , 王兰生 . 工程地质分析原理 [M]. 第二版 . 北京 : 地质出版社 , 1994. (ZHANG Zhou-yuan, WANG Tian-shi, WANG Lan-sheng. Fundamentals of the engineering geology analyses[M]. 2nd edition. Beijing: Geological Press, 1994. (in Chinese))
    [20]
    陈祖煜 . 土质边坡稳定分析的原理 . 方法 . 程序 [M]. 北京 : 中国水利水电出版社 , 2004. (CHEN Zu-yu. Soil slope stability analysis-theory, methods. programs[M]. Beijing: China Water Power Press, 2004. (in Chinese))
    [21]
    STRPHEN G E, JEROME V D. Catastrophic Landslides: effects, occurrence, and mechanisms[M]. New York: Geological Society of America, 2002.
    [22]
    TETSUYA K, HISASHI A, AKIRA M, et al. Effect of the development of notches and tension cracks on instability of limestone coastal cliffs in the Ryukyus, Japan[J]. Geomorphology, 2006, 80 : 236 – 244.
  • Related Articles

    [1]ZHAI Qian, TIAN Gang, ZHU Yiyao, DAI Guoliang, ZHAO Xueliang, GONG Weimin, DU Yanjun. Physical-statistical model for estimation of hysteresis of soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2072-2080. DOI: 10.11779/CJGE20220865
    [2]ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007
    [3]TAO Gao-liang, LIAO Ling-jin, LEI Da, OUYANG Qing, PENG Yin-jie, ZHANG Fan. Fractal model for bimodal soil-water characteristic curve and its application in pore classification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1799-1809. DOI: 10.11779/CJGE202210005
    [4]FU Ying-peng, LIAO Hong-jian, LÜ Long-long, CHAI Xiao-qing. Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 502-513. DOI: 10.11779/CJGE202203012
    [5]FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
    [6]ZHOU Bao-chun, CHEN Zhi. Effects of density and hysteresis on hydraulic conductivity function of compacted expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1800-1808. DOI: 10.11779/CJGE201910003
    [7]ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, LI Jian-jun. Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039
    [8]GAO You, SUN De-an. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1884-1891. DOI: 10.11779/CJGE201710017
    [9]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [10]LIU Yan, ZHAO Chenggang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 399-405.

Catalog

    Article views (1188) PDF downloads (635) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return