• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QIAN Xiaoli. Displacement characteristics of pile groups with varying rigidity under axial load[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1454-1459.
Citation: QIAN Xiaoli. Displacement characteristics of pile groups with varying rigidity under axial load[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1454-1459.

Displacement characteristics of pile groups with varying rigidity under axial load

More Information
  • Published Date: October 14, 2008
  • A series of physical simulation experiments for pile groups with varying rigidity and those with uniformly distributed piles under static axial load were done,and the test results were analyzed and compared.It was indicated that for the displacement distribution type of the pile group with varying rigidity the displacement of the side piles was larger than that of middle piles,this was quite the contrary of uniformly distributed piles.The total settlement increased slightly and differential settlement decreased markedly.Increasing the length of middle pile could increase the bearing capacity both of the pile groups and soils under the pile cap for varying rigidity pile groups,indicating that the bearing capacity of the side piles was latent in uniformly distributed piles.The shaft friction developed along the lower part to the middle of the pile in pile groups,different from that of single pile.The less the pile spacing,the more obvious this trend.
  • Related Articles

    [1]WAN Yi, CHEN Guo-qing, SUN Xiang, ZHANG Guang-ze. Triaxial creep characteristics and damage model for red sandstone subjected to freeze-thaw cycles under different water contents[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1463-1472. DOI: 10.11779/CJGE202108011
    [2]LIU Wen-bo, ZHANG Shu-guang, CHEN Lei, SUN Bo-yi, LU Ping-ping. Accelerated creep model for rock based on statistical damage principle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704. DOI: 10.11779/CJGE202009014
    [3]ZHANG Liang-liang, WANG Xiao-jian. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092. DOI: 10.11779/CJGE202006012
    [4]LI Ren-jie, JI Feng, FENG Wen-kai, WANG Dong-po, ZHANG Jin-ming. Shear creep characteristics and constitutive model of hidden non-persistent joints[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2253-2261. DOI: 10.11779/CJGE201912010
    [5]YANG Sheng-qi, XU Peng. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1846-1854. DOI: 10.11779/CJGE201410012
    [6]ZHOU Zhi-gang, LI Yu-zhou. Creep properties and viscoelastic-plastic-damaged constitutive model of geogrid[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1943-1949.
    [7]Numerical simulation of a new damage rheology model for jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]ZHANG Jiupeng, HUANG Xiaoming, MA Tao. Damage-creep characteristics and model of asphalt mixture[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1867-1871.
    [9]XU Hongfa, LU Hongbiao, QIAN Qihu. Creep damage effects of pulling grouting anchor in soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 61-63.
    [10]GE Xiurun, REN Jianxi, PU Yibin, MA Wei, ZHU Yuanlin. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191-195.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return