• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Xiaowen, NG C W W. Analytical solution for estimating surface settlements induced by multiple tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1703-1710.
Citation: ZHOU Xiaowen, NG C W W. Analytical solution for estimating surface settlements induced by multiple tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1703-1710.

Analytical solution for estimating surface settlements induced by multiple tunnel excavation

More Information
  • Published Date: November 14, 2007
  • The derivation of an approximate explicit analytical solution was presented to calculate three-dimensional surface settlements due to the excavation of either single or multiple tunnels in a homogeneous elastic soil.This solution was based on the integrated form of Mindlin’s equations and Taylor’s series expansions.Surface settlements due to the construction of tunnels with an arbitrary orientation during the tunnel advancement with and without supporting pressure could be modelled by using a stress relief coefficient.The derived analytical solution was verified by carrying out a three-dimensional finite element analysis of a single tunnel excavation.The discrepancy between the simplified approximate solution and the finite element analysis was less than 9%.The usefulness of the simplified approximate analytical solution was demonstrated by analyzing two parallel and two cross tunnels.
  • Related Articles

    [1]WANG Zhi-jie, YANG Guang-qing, WANG He, LIU Wei-Chao. Mesoscopic numerical studies on geogrid-soil interface behavior under rigid and flexible top boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 967-973. DOI: 10.11779/CJGE201905021
    [2]WANG Jia-quan, LU Meng-liang, ZHOU Yue-fu, ZHANG Liang-liang. Bearing characteristics of reinforced soil with longitudinal and transverse ribs of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 186-193. DOI: 10.11779/CJGE201801020
    [3]CHEN Chang-fu, LIANG Guan-ting, TANG Yu, XU You-lin. Anchoring solid-soil interface behavior using a novel laboratory testing technique[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1115-1122. DOI: 10.11779/CJGE201506018
    [4]ZHENG Jun-jie, MIAO Chen-xi, XIE Ming-xing, ZHANG Jun. Interface properties and influence of particle size on geogrid reinforcement performance by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1423-1428.
    [5]ZHU Hong-hu, ZHANG Cheng-cheng, PEI Hua-fu, ZHOU You, SHI Bin. Pullout mechanism of GFRP soil nails[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1843-1849.
    [6]DUAN Jian, YAN Zhi-xin, GUO Rui-jian, LIU Zi-zhen, REN Zhi-hua. Failure analysis of soil anchors induced by loose interface under pullout load[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 936-941.
    [7]WANG Qi-yun, XIONG Zhi-biao, ZHANG Jia-sheng, CHEN Xiao-bin. Model tests on resistance behaviors of rock-concrete interface of rock-sockted piles in red-sandstone rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 661.
    [8]Experimental methods for interface behaviors of geosynthetics in landfills[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]ZHANG Mengxi, HUANG Chao. Ultimate pullout resistance model for rigid denti-strip reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1336-1344.
    [10]YANG Guangqing, LI Guangxin, ZHANG Baojian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952.

Catalog

    Article views (1691) PDF downloads (291) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return